Impact of Body-Biasing Technique on RTN-induced CMOS Logic Delay Uncertainty

Takashi Matsumoto
Department of Communications and Computer Engineering
Kyoto University, Kyoto, Japan
Email: tmatsumoto@vlsi.kuee.kyoto-u.ac.jp

Kazutoshi Kobayashi
Department of Electronics
Kyoto Institute of Technology, Kyoto, Japan

Hidetoshi Onodera
Department of Communications and Computer Engineering
Kyoto University, Kyoto, Japan

Abstract—The impact of Random telegraph noise (RTN) on a CMOS logic circuit is evaluated. Statistical nature of RTN-induced delay fluctuation is described by measuring 1,680 ROs fabricated in a commercial 40 nm CMOS technology. Small number of samples have a large RTN-induced delay fluctuation. It is found that the impact of RTN-induced delay fluctuation becomes as much as 10.4 % under low supply voltage (0.65V) operation. The impact of RTN-induced delay fluctuation tends to be reduced by forward body-biasing technique, but a few ROs do not follow this tendency.

I. INTRODUCTION

Designing reliable systems has become more difficult in recent years[1]. RTN already has a severe impact on CMOS image sensors[2], flash memories[3], and SRAMs[4]. Recently we have shown that RTN also induces performance fluctuation to logic circuits[5]. On the other hand, adaptive body-biasing technique has been widely used to compensate for die-to-die parameter variations[6]. However, the impact of the body-biasing technique on RTN at the circuit level has not been well understood. In this paper, we investigated the impact of body-biasing technique on RTN-induced circuit delay fluctuation.

II. IMPACT OF BODY-BIASING TECHNIQUE ON RTN

Fig. 1 shows the simplest test structure that can emulate the synchronous circuit operation. Combinational circuit delay is emulated by ring oscillator (RO) oscillation frequency. Sequential circuit operation is emulated by D flip-flop (DFF) toggled by the RO output. The power supply for RO (VDD\textsubscript{RO}) and DFF (VDD\textsubscript{DFF}) can be independently controlled. The value of VDD\textsubscript{DFF} is set to be larger than VDD\textsubscript{RO} so as to guarantee the DFF operation. We can also control the substrate bias for pMOS and nMOS. Fig. 2 shows the whole test structure for RTN measurement. RTN-induced delay fluctuation is measured by a ring oscillator (RO) frequency fluctuation. There are 840 same ROs on 2 mm2 area and the statistical nature of RTN can be evaluated by the RO array. This chip is fabricated in a commercial 40 nm CMOS technology. All measurements are done at room temperature. Figure 3 shows the histogram of measured \(\Delta F/F_{\text{max}}\) for the whole test structure of Fig. 2 over two chips (1,680 ROs). Here, \(F_{\text{max}}\) is defined as the maximum oscillation frequency and \(\Delta F\) is defined as the maximum frequency fluctuation. \(\Delta F/F_{\text{max}}\) is a good measure for the impact of RTN-induced frequency fluctuation and maximum \(\Delta F/F_{\text{max}} = 10.4\%\).

Figure 4 shows the measurement results of \(\Delta F/F_{\text{max}}\) of different ROs for various substrate bias condition. Substrate bias conditions are categorized as reverse bias case (\(V_{bs-pMOS} = -0.2\text{V}, V_{bs-nMOS} = 0\text{V}\)), normal bias case (\(V_{bs-pMOS} = 0\text{V}, V_{bs-nMOS} = 0\text{V}\)), and forward bias case (\(V_{bs-pMOS} = +0.2\text{V}, V_{bs-nMOS} = +0.2\text{V}\)). 300 ROs in one test structure of Fig. 2 are investigated at VDD\textsubscript{RO}=0.65V. Figure 4 shows ROs that have more than 4 % fluctuation at reverse bias case to evaluate the forward body-bias effect on large \(\Delta F/F_{\text{max}}\) samples (28 ROs). When substrate bias is changed from the reverse bias case to the forward bias case, \(\Delta F/F_{\text{max}}\) tends to decrease. However, for example, \(\Delta F/F_{\text{max}}\) slightly increases in the case of the RO location “68”, “160”...
Data of Two Test Structures (1680ROs)

Fig. 3. The histogram of measured $\Delta F/F_{\text{max}}$ for the whole test structure of Fig. 1 over two chips (1680 ROs).

Fig. 4. $\Delta F/F_{\text{max}}$ of different ROs for various substrate bias condition. ROs that have more than 4% fluctuation at reverse substrate bias case are shown.

and “219” when forward substrate bias is applied. The impact of RTN-induced delay fluctuation tends to be reduced by forward body-biasing technique, but a few ROs do not follow this tendency.

Figure 5 shows the frequency fluctuation of RO location (section No. 1) of Fig. 4 for various substrate bias. Four-state fluctuation due to two traps is clearly observed for the normal substrate bias case. The effect of one of two traps disappears for the forward bias case. Figure 6 shows the frequency fluctuation of RO location 1 of Fig. 4 when pMOS or nMOS is forward biased. The effect of one of two traps disappears only when nMOS is forward biased. Thus the disappeared two-state fluctuation is caused by a single trap in a specific nMOS in the RO.

III. CONCLUSION

Statistical nature of RTN-induced delay fluctuation is described by measuring 1,680 ROs fabricated in a commercial 40 nm CMOS technology. Small number of samples (19 ROs) have a large RTN-induced delay fluctuation of more than 6% of nominal oscillation frequency. The impact of RTN-induced delay fluctuation becomes as much as 10.4% under low supply voltage (0.65V) operation. The impact of RTN-induced delay fluctuation tends to be reduced by forward body-biasing technique, but a few ROs still have a large fluctuation.

ACKNOWLEDGMENT

The VLSI chip in this study has been fabricated in the chip fabrication program of VLSI Design and Education Center (VDEC), the University of Tokyo in collaboration with STARC.

REFERENCES