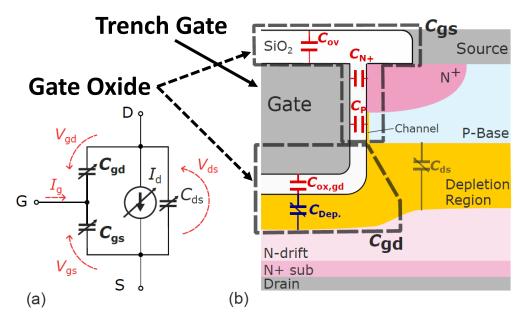


Modeling of Dynamic Input Capacitance in Trench-Gate SiC MOSFETs via Voltage-Dependent Gate Oxide Capacitance Partitioning

Taiki Nishioka¹, Kazuki Matsumoto¹, Hajime Takayama¹, Jun Furuta², Kazutoshi Kobayashi¹, Michihiro Shintani¹

- 1. Kyoto Institute of Technology, Japan
- 2. Okayama Prefectural University, Japan



Problem:

 Conventional models do not accurately capture the complex gate charge mechanism of trench SiC MOSFETs.

Proposed Solution:

- TCAD analysis reveals transient charge boundary behavior.
- New model captures dynamic capacitance partitioning and voltage dependence.

Trench MOSFET cross-section

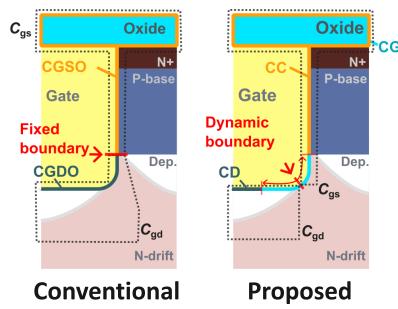


Illustration of the gate partitioning in SPICE models

Proposed Model:

• $C_{\rm gs}$ and $C_{\rm gd}$ both dependent on $V_{\rm gs}$ and $V_{\rm gd}$.

$$C_{gs}(t) = (\mathbf{CG} - \mathbf{CC} - \mathbf{CD}) \frac{|v_{gs}|}{|v_{gs}| + |v_{gd} - \mathbf{vJ}|} + \mathbf{CC}.$$

 $C_{\rm gd}(t) = \mathbf{CG} - C_{\rm gs}(t).$

Bold: model parameters

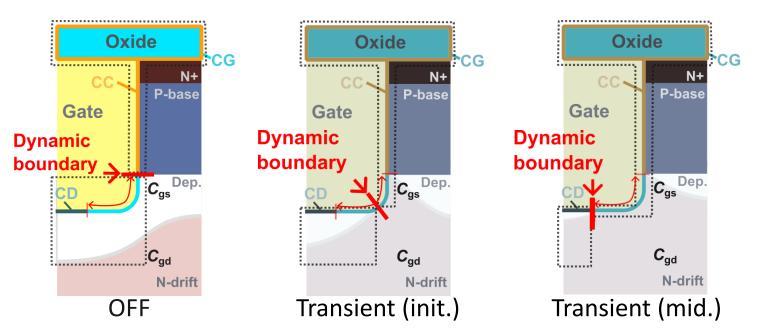
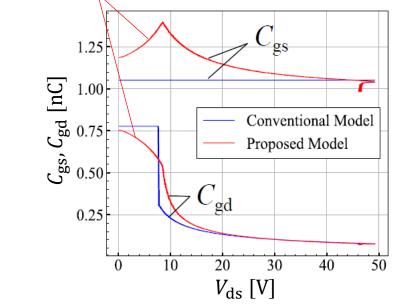



Illustration of **Proposed model** behavior during the switching transient

Result

- Validated on a commercial SiC UMOSFET.
- Improved accuracy (RMSE) is achieved.

Dynamic behavior

Modeled C_{gs} and C_{gd} as a function of V_{ds}