
A Minimal Roll-Back Based Recovery Scheme

for Fault Toleration in Pipeline Processors

Jun YAO, Ryoji Watanabe, Takashi Nakada,

Hajime Shimada, Yasuhiko Nakashima

Graduate School of Information Science,

Nara Institute of Science & Technology,

Takayama-Cho 8916-5, Ikoma 630-0192, Japan

{yaojun, ryoji-w, nakada, shimada, nakashim}@is.naist.jp

Kazutoshi Kobayashi

Graduate School of Science & Technology,

Kyoto Institute of Technology,

Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan

kobayasi@kit.ac.jp

Abstract—In this paper, we proposed a light-weighted recovery
scheme for fault tolerable pipeline processors after error has
been detected by redundant executions. A minimal rolling back
procedure is designed to schedule the re-execution based recovery
in a one-cycle delay. This scheme makes full use of in-fly pipeline

working status to aid the recovery, which relieves the recovery
from a large checkpoint buffer.

Keywords-Fault tolerance; System recovery;

I. INTRODUCTION

Generally, the error detection in electronic devices can

be achieved by proper replication. Dual modular redun-

dancy (DMR) based execution in IBM series including

z990 [1] and replicated thread execution AR-SMT [2] are typ-

ical ways of error checking mechanisms in microprocessors.

However, conventional recovery methods in these architectures

usually require a large checkpoint buffer to cache correct pro-

cessor status. After error detection, long distance rolling back

is performed to restore system from erroneous executions.

Both the additional checkpoint buffer and the required state

machine to control the recovery will add to the area cost and

the large extra units may cause further vulnerability issues for

the system robustness.

In this paper, we proposed a light-weighted roll-back based

error recovery scheme. The proposed method uses the correct

in-fly status inside the pipeline processor, which is expected

to largely reduce the recovery complexity and cost.

II. PROPOSAL OF A LIGHT-WEIGHTED RECOVERY

A recovery procedure is necessary to restore processor status

after detecting error in runtime executions. Figure 1 gives

our baseline pipeline processor with error detection supports,

following a typical dual modular redundancy (DMR) structure.

The DMR processor contains two identical pipelines and each

pipeline follows a textbook prototype that has six stages,

including IF, ID, RR, EX, MA, and WB. The instructions are

replicated at the IF stage by feeding the two pipelines with

identical program counters (PCs). Data integrity and validity

checks are performed per each stage by the “==?” units.

A. Basic Roll-back Based Recovery Procedure

To reduce the recovery cost from checkpoint buffers and

control logics, we proposed a fast recovery scheme based on

Pipeline Register

EX Logics

(1)

Pipeline Register

EX Logics

(1)

Pipeline Register Pipeline Register

==? ==?

Err_A Err_B

==?

Eex_A

==?

Eex_B

(2)

Mem ports Mem ports

w_en? w_en?

E
X

M
A

(2)

IF

ID

RR

EX

MA

WB

IF

ID

RR

EX

MA

WB

A B Pipeline A Pipeline B

==?

==?

==?

==?

==?

==?

==? Dependability check logic

write enable

Fig. 1. DMR execution scheme in EX and MA stages

A B

IF ==

I k I k

... ...

== I k-1

(a) cycle n:

detecting

(b) cycle n:

preparing for re-execution

A B

==

... ...

==

{I k-1; \

 branch I k .PC}

With error

S[j]

S[i]

S[j]

S[i]

I k-1

I k I k

I’k-1 I’k-1

IF I k+xI k+xI k+x I k+x To be flushed, as on

a mipredicted

branch path

Next cycle, start
from refetching I k .

Fig. 2. Restarting execution by inserting a branch style instruction.

a minimized roll-back concept. The basic idea of recovery is

given in Fig. 2.

The re-execution based recovery is triggered by uncondi-

tionally jumping to the correct restart point via citing the

information stored in the last correct stage. Fig. 2(a) shows

an example of two consecutive instructions as Ik−1 and Ik.

Assuming that at cycle n, the comparators indicate that one

of the executions of Ik is problematic while the executions of

Ik−1 are verified to be correct, the information of Ik−1 can

thus be used to instruct the recovery.

As depicted in Fig. 2(b), Ik−1 will be extended a lit-

tle to compound with a dummy branch instruction, as

branch Ik .PC . Ik’s program counter (PC) will be filled into

2010 Pacific Rim International Symposium on Dependable Computing

978-0-7695-4289-8/10 $26.00 © 2010 IEEE

DOI 10.1109/PRDC.2010.44

237

/* function of get_restart_PC() */

enum {IF, ID, RR, EX, MA, WB} i, j, r;

/* 1) Locate the last stage with error */

for (i=WB;i≥IF;i--)

if (pipeA_stage[i].error || pipeB_stage[i].error)

break;

if (i<IF) return NULL; /* No Error */

/* 2) Locate the next stage, skipping NOPs from hazard. */

for (j=i+1;j≤WB+1;j++)

/* HAZARD_NOPs are not in original programs. */

if (pipeA_stage[j].OP != HAZARD_NOP) break;

/* Igood in stage[j], Ierror in stage[i] */

/* 3) Flushing erroneous info, like a branch mispred. */

for (r=IF;r<j;r++)

pipeA_stage[r].OP = pipeB_stage[r].OP = HAZARD_NOP;

/* 4) Jump to the correct restarting point

* by using the correct value in stage[j] */

if (pipeA_stage[j].flag & IS_BRANCH)

if (pipeA_stage[j].flag & IS_TAKEN)

/* (I) restart from branch target */

return pipeA_stage[j].brTarget;

/* (II) restart from next PC of Igood */

return ++pipeA_stage[j].PC;

Fig. 3. Basic roll-back based recovery

the branch instruction as the branch target. If the jump is

correctly handled, Ik will be re-fetched from the cache and the

re-execution will thereby start in cycle n+1. Here, we assume

that caches are covered by ECC-like technologies so that a

re-fetch can obtain the correct data.

The algorithm to extract restart PC from the last correctly

executed instruction Ik−1 is listed in Fig. 3. Specifically, as

the step “4)” in Fig. 3 shows, according to the instruction

type of last correct instruction Igood , the restart PC can either

be the next PC of Igood , or Igood’s branch target. Since the

branch target of Igood is also under the comparison in the

DMR processor, it is safe to use this verified value under this

condition.

B. Necessary Extensions for Delay Branch Instruction

Some instruction set architectures (ISAs) allow branches to

have one or more delay slot instructions to reduce the branch

misprediction penalty. Since the PC of a delay-slot instruction

can not be directly used to calculate its successive instruction,

a special treatment is required, as shown in Fig. 4.

The basic idea is that when the last correctly executed Igood
is in the delay slot of a delay branch, a further lookup in the

pipeline will be performed to locate the delay branch itself, as

Igood2 . Combining the information of both Igood and Igood2 ,

the correct restarting address of Ierror can be calculated, shown

as step “3.5)” in Fig. 4.

Another special case is that the Ierror itself is in the delay

slot. Two cycles may be required to restart from this situation.

The two cycles respectively restart the delay-slot instruction

and the possible branch target of Igood . This two-cycle re-

covery will complicate the recovering controller. Assuming

that the branch instruction only affects the PC in the next IF

stage, no data will be actually updated into the register file or

/* between (3) and (4), in function of get_restart_PC() */

enum {IF, ID, RR, EX, MA, WB} m;

/* 3.5) Locate a further stage containing non-HAZARD_NOP. */

for (m=j+1;m≤WB+1;m++)

if (pipeA_stage[m].OP != HAZARD_NOP) break;

/* Continuous Igood and Igood2 in stages [j], [m],

Ierror in stage[i] */

if (pipeA_stage[j].flag & IS_DELAYSLOT)

/* stage[j] inst is delay slot,

cannot be directly used for determine restart_PC */

if (pipeA_stage[m].flag & IS_TAKEN)

restart_PC = pipeA_stage[m].brTarget;

else

return ++pipeA_stage[j].PC;

else if (pipeA_stage[j].flag & IS_BRANCH)

if (pipeA_stage[j].flag & IS_DELAYBRANCH)

/* Error in delay slot, restart delay branch */

return pipeA_stage[j].PC;

Fig. 4. Extensions to guarantee correct roll-back on path after branch with
a delay-slot

memory1. Under this consideration, it is safe to restart from

the delay branch instruction. By this means, the recovery can

still be scheduled within one cycle.

C. Checkpoint Buffer

An ECC-covered checkpoint buffer will be added after

WB stage to ensure that there is always a correctly executed

instruction inside the pipeline processor. This buffer contains

PC, instruction type, and branch target. The NOP instructions

generated by pipeline hazards will not update this buffer. In

addition, if a delay slot instruction passes through the commit

phase, it will be merged with the delay branch in this buffer

to indicate the correct restarting point.

III. CONCLUSION

We presented a recovery scheme based on a minimal

distance roll-back for fault tolerable pipeline processors with

proper redundancy. After error detecting, the recovery can be

scheduled within one cycle. By making use of the already

redundant units for error detection, this method largely allevi-

ates the necessities for checkpoint buffers. Compared to long-

distance recovery which requires additional buffers to cache

register file data and memory modification logs, the proposed

method only needs a buffer to store a PC, an instruction

type, and a branch target after the commit phase. This cost

is relatively negligible.

ACKNOWLEDGMENT

This work is supported by VLSI Design and Education

Center (VDEC), University of Tokyo with the collaboration of

Synopsys Corporation. This work is supported by JST CREST.

REFERENCES

[1] P. Meaney, S. Swaney, P. Sanda, and L. Spainhower, “IBM z990 Soft
Error Detection and Recovery,” Device and Materials Reliability, IEEE

Transactions on, vol. 5, pp. 419–427, Sept. 2005.
[2] E. Rotenberg, “AR-SMT: A Microarchitectural Approach to Fault Toler-

ance in Microprocessors,” in Proceedings of the 29th Annual International

Symposium on Fault-Tolerant Computing, pp. 84–91, 1999.

1If the branch instruction attempts to modified register file, it can be
decomposed into instructions of a register update and a pure branch.

238

