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Abstract—In the recent years, the increasing error rate has study of the relationship between the soft error rate (SER)
become one of the major impediments for the application of n& gnd the supply voltage in many processor units, including
process technologies in electronic devices like micropressors. latches, a chain of 11 fan-out-of-four (FO4) inverters (as
This thereby necessitates the research of fault toleratiomech- ’ . L . .
anisms from all device, micro-architecture and system levs to a repre.sentatlon OT combmatlc_)nal logic unit), and _SRAMS'
keep correct computation in future microprocessors, alongthe Increasing tendencies of SER in these processor units can be
advances of process technologies. observed along the decrease of the supply voltage, which is a

Space redundancy, as dual or triple modular redun- typical trend as the process technology improves. Meamwhil
dancy (DMR or TMR), is widely used to tolerate erors with  {he rate of permanent faults caused by electronicmigration

a negligible performance loss. In this paper, at the micro- . - . . .
architecture level, we propose a very fine-grained recovery stress-migration, time-dependent dielectric breakdawther-

scheme based on a DMR processor architecture to cover everymal cycling is likely to take a similar increasing trend in
transient error inside of the memory interface boundary. O  consequence of technology scaling, as introduced in p&per [
recovery method makes full use of the existing duplicated For these reasons, it can be predicted that future process
hardware in the DMR processor, which can avoid large hard- ecpnnglogy will be unfeasible to produce processors with
ware extension by not using checkpoint buffers in many fauk _ A . . .

tolerable processors. The hardware-based recovery is achied by sufﬁmept rellab|I|ty.. Schemes spe_C|aIIy for reliable exions
dynamically triggering an instruction re-execution procedure in  from either the device or the architecture levels are thereb
the next cycle after error detection, which indicates a neazero quired to keep processors advancing along with the contisiuo
performance impact to achieve an error-free execution. scaling of process technology.

A TMR architecture is usually preferred as it provides a  pmany fault tolerable mechanisms at the architectural
seamless error correction by a majority voting logic and theefore | | h dual ti in IBM's S/390 G5 d
generates no recovery delay. With our fast recovery scheme evel, such as dual execulions in S an

at a low hardware cost, our result shows that even under a 2990 microprocessors [6], [7], simultaneous and redurgant
relatively high transient error rate, it is possible to only use thread (SRT) [8], and Chip-level Redundantly Threaded mul-

a DMR architecture to detect/recover errors at a negligible tiprocessor with Recovery (CRTR) [9] have been employed to
performance cost. Our reliable processor is thus construed gjjeviate the increasing pressures from electronic erbing

to use a DMR execution with the fast recovery as its major detection in th hitect . il f d
working mode. It saves around 1/3 energy consumption from a €'TOr detection in these architectures is mainly perforig

traditional TMR architecture, while the transient error co verage .Checki.ng results frpm duplicated exeputions, and the regoV
is still maintained. is achieved by rolling back to a previously stored checkpoin

Index Terms—Fault tolerance, redundancy, system recovery  state. A coarse checkpoint granularity is commonly applied
in these architectures to prevent a very frequent checkpoin
update. However, a major drawback of the coarse granularity
Nowadays, failures in the electronic devices have predenis that all processor running statuses including contefits o
a serious challenge for the correct operations of the modeagister file, system control registers, and memory updates
processors. The electronic failures are usually causedfty srecessary to be periodically buffered. The hardware eiiens
and hard ones. A soft error is marked as transient and nay achieve the storage of checkpoint data can hardly be
occur in a processor when a high-energy cosmic partiakeglected. In addition, a relatively complex recovery ssme
charges/discharges and inverts the transistor logict#.sha based on a software interrupt is generally required, as de-
hard error is caused by permanent physical defects and #ueibed in paper [6]. It may be a visible impact to performanc
circuit may not recover to its normal status as under a tesutsi under a future technology where error occurrence may become
one. The pressure from faults will be even threatening withore frequent than the current period.
the technology trends in the device processing area ledading In this research, we proposed a very fine-grained recovery
the reduction in operating voltage, the increase in praresscheme for a space redundancy processor, in which the re-
frequency and the increase in the density of on-chip tréarsis covery granularity is at a stage level. This baseline premes
as indicated in papers [1]-[4]. Specifically, paper [4] give architecture is from a previous research, where a pipeline

I. INTRODUCTION
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structure was designed for the purpose of modularizing high
reliable system via space redundancy [10]. In the constduct

Per Stage data for
" 7 dependability checks~| == ==

reliable processor, data sanity checks are performed mér ea Local
pipeline stage, which provides thorough information of the
correctly executed stages inside the processor. Thesiedeta IF error?
execution information are effectively used to achieve the IF [ shared ins viem (Dual-Ported)
proposed recovery which dynamically schedules proper in- ID D
struction re-executions after an error detection, folloyvia RR Data Dependence
similar route after the resolution of a branch mispredittim B am
summary, this paper has presented the following contobsti MA
1) It gives a recovery method by including very few addi- w8 1 g
tional hardware units like checkpoint buffer. The already EX EX Logics / g §
redundant hardware units in a DMR processor are fully Read&Write] e |8
used as the checkpoint information for recovery. MA ‘ Shared Data Mem (Dual—Porter*)
2) The delay from recovery is minimized by using an wi L rite I— |

extremely short distance rollback. It is achieved by

re-executing the instruction after the latest correctly Fig. 1. A scalable pipeline module with dependable check

executed stage inside the pipeline. With a proper control,

the re-execution starts from the cycle right after the error

is detected, . an be a flexible connection and an adaptive space redundancy
3) It reduces 1/3 working energy as compared to a tracﬁ— i :

. . L ased on proper reconfiguration. For these reasons, we use a

tional TMR processor while maintaining an equal cover-

age for transient errors. With a negligible performanCsecalable pipeline module from a previous research to coctstr

. .processors with an adaptive space redundancy. The fine-
loss from error recovery, a DMR processor with this ~. Lo : .
) . L rained error detection in the baseline architecture asees
fine-grained recovery can be a substitution for a TM . S
. . . as a background to achieve a fast recovery in this paper.
processor in tolerating all transient faults.

The paper is organized as follows: Section Il introduces

the design of a scalable pipeline module for constructirlg Scalable Pineline Module Desian with Dependabilit
processors with adaptive redundancy. Section Ill dessrie P g ® y

hardware based fine-grained recovery proposal, which -effec The scalable pipeline design to construct dependable proce
tively uses the detailed per stage error detection infdomat sors is given in Fig. 1, which contains six traditional tedk-
In Section IV, performance and hardware results are predengty|e stages as instruction fetch (IF), instruction decgB?,
to study the effectiveness of the proposal. Section V calesu register read (RR), execution (EX), memory access (MA), and

the whole paper. writeback (WB).
Il. SCALABLE PIPELINE MODULE FORCONSTRUCTING Different from the implementation in papers [7], [8], [11]
DEPENDABLE PROCESSORS which are also fault-tolerable designs based on space fedun

In our research, we are focusing on a framework Witﬂancy, we designed tr_le error detection to b_e performed at a
relatively ideal reliability, whose fault tolerating abiés can Stage boundary. The distributed comparators inside evages
meet the top requirement from systems working under can help achieve an earl)_/ :_:md tho.rough error detectlon.. Wlth
very high electronic error occurrence environment, such ggfast recovery scheme, it is possible to introduce a minimal
computational units in a satellite. Space redundancy BI], [performance impact even under a relatively high error rate.
[11], [12] is assumed because of its better coverage for bothAS shown in Fig. 1, input/output unidirectional links are
transient and permanent faults than the time redundangy [181cluded in the pipeline module, which are used for depend-
[15]. ability data bypassing. A space redundancy processor can be

Generally, a Triple Modular Redundancy (TMR) [10] archiconstructed by connecting multiple pipeline modules where
tecture is preferred for its seamless coverage for all ieans copies of a single thread are simultaneously executed and
and permanent faults. However, a traditional fixed conoecticompared.
between the three identical modules in TMR presents little The storage units including register files, memory units (in
flexibility. Its seamless recovery capability will be untis- struction and data caches) are designed to be covered by Erro
able after a permanent fault and will thus require a new sébrrecting Codes (ECC) [16] logics to guarantee a reliable
of TMR to continue the recovery function, despite that 2/8ata storage. Data stored into the memory structures are
of the original logics may still work properly. In addition,regarded to be safe if they were checked before committing.
the triple redundancy is usually an over-design under tisfferent to the register file, caches are shared at the peace
assumption that transient faults are still more commonscadevel, since duplicating these large units will cause a harga
than permanent ones. A possible solution to these probleotst.



A B Pipeline A Pipeline B will be passed to the left neighbour pipeline by a unidiremzil

IF =¥?|F L L link. Accordingly, at the same time that EX stage in either
ID :%?|D ’pipe"ne Registdr ’pipe"ne Regis@r @ pipeline works on the instruction provided by the pipeline
RR==7RR ¥ registers before it, the outputs of these two pipeline tegss
@) " )
@ @ are compared by the data dependability check logics. The

EX==2EX | |
i} =
MA ==?MA EX Logics / Err_ A EX Logics / Err_B

results of these data validity checks are marked’as 4 and
E,. p (with a notation of %r”) because they actually indicate

WB==?WB ’Pipelin;RegiS@r ’Pipe“ne‘RegiS@r @ the correctness of outputs from the RR stage of the previous
l cycle. By this way, the critical path of EX stage is not impakt
(2)M (==?) " (=2 by the dependability check logics and the clock frequeney ca
§ e ports em ports remain uninfluenced after adding reliable features.
W—‘:”? Ee’f—A Eex_B An erroneous state indicated by either signal Bof. 4,

T E,, p reveals that some faults have occurred in either the
write enable previous RR stage or the pipeline register between RR and EX
@ Dependability check logic stages. This error may most probably influence the execution
correctness of the EX stage, and it should thereby not be

Fig. 2. DMR execution scheme in EX and MA stages propagated forward. For stage like MA, as shown in Fig. 2,

when signalsE., 4 and E., p contain error information,
data committing to the data memory shall also be disabled.
B. Dual Modular Redundancy (D_MR) Based F.ault-Toleran_ce Only for the data committing part of MA and WB stages, the

~ Based on the scalable pipeline module introduced in Segitical paths are extended by the lock-step mechanism. As
tion II-A, processor cores with high dependability can bghese two stages usually are not the bottleneck in detenmini
constructed via proper scaling. Figure 2 shows the DMfRe working frequency, we can regard the frequency to be

combination by including two pipeline modules. unchanged after including the dependability check logics.
Using the framework given in Fig. 2, reliable computation is
guaranteed by a redundant execution of each instructioa. Th  Ill. STAGE-LEVEL ERRORRECOVERY SCHEME

instruction replication starts at the fetch stage. Thetisr  According to the background introduction, two identical
program counter (PC) of a single application thread is r@spgnstructions are simultaneously executed in the DMR based
tively provided to both pipelines when the thread is launicheprocessor architecture. Since those duplicated units én th
The duplicated PCs are then accumulated in each pipelggace redundant system—including the register files and se-
module. With the dual-ported instruction memory shareguential elements such as pipeline registers—alreadyigeov
between the two pipeline modules as shown in Fig.1, sargesecondary storage for the processor running information,
instructions can be read out in either fetch Stage from ita O\M‘]ey may be sufficient to serve as the Checkpoint data in the
memory 1/O port. After that, the two identical instructiongraditional sense so as to reduce the hardware extensions fo
will be provided to the latter stages in sequence, achiesinghe recovery supports. Moreover, in this architecture, com
mirrored execution of the original program. Since the twparisons are made per each stage boundary, which provides
pipelines work on a same instruction stream, one memog¥ry fine-grained information of the accurate executions in
write port will be sufficient for this DMR mode. Data inSidethe processor. Therefore, the recovery can start from ﬁ@st
memory and register files are covered by ECC logics to tderahat error is detected, instead of rolling back to a hisadric
single event upset (SEU). checkpoint state. In this section, a stage-level instoncte-
Although this DMR architecture is very similar to somesxecution scheme is proposed to achieve a quick hardware
traditional lock-step based fault tolerating micropretes pased recovery, in which a minimal rollback is performed
such as IBM's S/390 G5 [6], the lock-step mechanism ifased on the thorough understanding of erroneous locations
this research is designed not to impede the processor vgprkifside the DMR processor.
frequency. As Fig. 2 illustrates, the dependability cheudid
is employed after each pipeline register, which contaires tA. Basic Idea of the Recovery
output of the last stage generated in the previous cycle.vany coarse-grained checkpoint based recovery method
Specifically, for the EX stage, the pipeline register befoigoes not require frequent data sanity checks. The perfarenan
it holds the information of operation code, Source/destingnd frequency impacts from error detection are therefore
tion register numbers, and the source operands data. Theseg likely to be visible. However, after detecting the erro
information—from last RR stage—serve as the inputs for thge coarse-grained recovery methods will usually require a
combinational logic in the EX stage in this clock period software sequence like an interrupt to help roll back to the
Meanwhile, as shown in Fig. 2, all the pipeline register atgp checkpoint state. The software sequence is also required to
1 _ o be implemented with a full understanding of the processor
Forwarding paths also provide inputs for EX stage. Howetlegy are

from latter pipeline registers in MA and WA stages and will dieeck there SpeC|f'Cat'on- In this section, we are tl’}ﬂl’lg tO. propose a
accordingly. hardware based recovery scheme for a fine-grained rollback,
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Fig. 3. Restarting execution by inserting a branch stylériasion.

where software interference may not be necessary if the erb@ directly calculated after,land its PC enter Stagg[ we
is caused by a temporary fault. can roughly regard that this augmentation does not exteand th
We designed our recovery scheme by using the idea @itical path.
instruction re-execution, assuming that the temporaryesta When restarting the execution of,| pipelines will be
change in combinational logics and sequential elemenés ligartially flushed as shown in Fig.3(b). The pipeline stages
pipeline registers will fade out after cycles. Basicallget from IF to the stage that contains erroneousilll be emptied
control of re-execution is designed to be inside the DMRBy filling no-operation KOP) instructions. The propagations
processor, which now has the runtime information of thef the last correct instruction.L; in this example and instruc-
stage holding the first erroneously executed instructiom, ations in the latter stages will be stalled by stopping thecklo
the stage with the last correctly handled instruction ad.wesignals to those corresponding pipeline registers. THixrithe
The instruction in the last correct stage can thus be usedfaslt toleration when further fault attacks during the resny,
the checkpoint data. by guaranteeing that there is always one or more correctly
The re-execution starts from an unconditionally jump to thexecuted instructions serving as the checkpoint data in the
correct restart point by citing the information stored ie thst pipeline. Although it is possible to use a hardened storage t
correct stage. Figure 3 shows the basic idea of this re-¢ieecu cache committed instructions as a checkpoint like in IBM&99
scheme. Using the example demonstrated in Fig. 3¢a), | microprocessors, the maximum distributions of checkpoint
and |, are two consecutive instructions and are executédta in our design may alleviate the high dependence to the
in sequence. Assume that in this example, no empty cyckisgle point in an IBM processor, especially when facing the
caused by hazards from data dependences or branch taiggeasing threats from hard faults. Moreover, the regpean
resolution delay are betweep_l; and I,.. As in Fig.3(a), at be started directly from the erroneously executed insoct
cyclen, the comparators detect that one copy of the executios that the depth of rollback may be smaller than many other
of 1, is problematic. Assuming that the executions gf | system recovery schemes which use coarse-grained hadtoric
are checked to have no errog,_L can thus serve as the lasicheckpoint.
correctly executed instruction at this point. As introduced in Section II-A, the memory structures in-
According to the design in Fig. 2, the error detected in cycuding data memory, instruction memory, and register file
n may have occurred in the last stage’s execution,afilcycle are covered by ECC-like technologies. A correct data storag
n-1, or have been introduced by the state change in pipelimethem can thus be assumed. Accordingly, no further large
register which holds;lin cyclen. Since the execution is basedcheckpoint buffer will be required to cache changing logs.
on a dual replication, it is impossible to tell which copy ef | _ i
execution is correct. Alternatively, the information sidrin B Implementation of Transient Error Recovery
the stages that contaip_l; will be used to indicate the correct Figure 4 gives the implementation of the stage-level re-
restart point. covery by slightly extending the architecture in Fig.2. In
As shown in Fig. 3(b), after detecting the error jp the last this figure, the units in gray are augmented for the recovery
correct instruction as,l ; will be extended to compound with purpose. For simplicity, only part of the whole DMR procasso
a dummy jump instruction, asranch I,.PC. l;’s program is given.
counter (PC) will be filled into the jump instruction as the Since the program counter (PC) of each instruction is the
branch target. If the jump is correctly handled, will be key information that we use to indicate the restart point, we
re-fetched from the instruction cache and the re-executioompound them in the pipeline register in each stage, as
will thereby start in cyclen+1. Note that the augmenteddepicted in Fig.4. This cost of hardware extension may be
branch instruction is used to express the idea for a propegligible because usually PC is attached as a part of the
rollback. It is not a real instruction and will only be validpipeline register—at least till the execution stage—fdcea
inside Stagef] in cyclen. Considering the possible delay issudating branch target and caching the correct return point of
by manipulating 4, as the target of this dummy branch carfunction or interruption calling. Normally, the pipelinegister



Pipeline A : Pipeline B (1) Procedure to restarting execution:
, enum {IF, ID, RR, EX, MA, WB 1} i, |, k;
1 n
! | Gen.Parity (1) [ pc B /+ i) Locate the last stage with error ]
! | for (FWBj  >IFi-)
1 if (pipeA_stageli].error || pipeB_stageli].error)
L : Sel_ w break;
T T if i <IF) return; / * No Error */
@ INC Inst. Mem,| [(2) w /+ ii) Locate the next stage, skipping stages
\ that contain hazard_NOP inst.  */
...... ! for (j=i+1;] <SWB+1j++)
_ _ N/ ! — _ if (pipeA_stage[j].OP != hazard_NOP) break;
[ pPC [ Pipeline Relglst’éd :[ PC [ PlrIJellne Re}glsteqL 1% 1 gooq in stagelf], | wrror in stageli] X/
! v
Stage{] ] D) ! ] /+ iii) Jump to the correct restart point
Logic X Logic * by using the correct value in stagel[j] */
false 1 if (pipeA_stage[j].OP != BRANCH
...... ! || “pipeA_stagelj].taken)
: /* Cond. a: | ¢ iS the successive inst. of | good *1
[ pc [ Pipeline Register] /[ PC [ Pipeline Register] /+ PC is only covered by parity */
Fa— 1 ! good_PC = getCorrectPC(pipeA_stage[j].PC,
Stagelj] _ =) X . pipeB_stage[j].PC);
Logic 1 Logic pipeA_stage[lF].CurrentPC = good_PC;
true ! pipeB_stage[IF].ACurrenAtPCl: good_PC;
j =i+n+1, wheren = No. of empty stages between staged;. } /ejseCur{rentPC is (1) in Fig.4 *!
"""""" [+ Cond. b: | .o is the branch target of | good *1
Symbols: pipeA_stage[IF].NextPC = pipeA_stage[j].brTarget;
] Augmented units for a stage-level recove PC parity bit; p|peB_stage[‘IF].NexltPC = pipeA_stage(j].brTarget;
o ) ) . 4" . . /* NextPC is (2) in Fig.4 */
[j Pipeline register with error-containing data---either generated in logics )
of stagef-1] in the last cycle, or by SEU in this pipeline register;
(1) Checkpointed PC from a non-branch or an untaken branch instruction /* iv) Flush and enable stage[IF] to stage[j-1] «/
(2) Checkpointed PC from a taken branch instruction. for (k=IF;k  <jk++) {
pipeA_stage[k].OP = pipeB_stage[k].OP = hazard_NOP;
pipeA_stage[k].clk_EN = pipeB_stage[k].clk_EN = true;

Fig. 4. Units required for recovery from a transient error.

check_point =j; / = Checkpointing */
is the object for checking data correctness, as described i’l/* end of restart execution procedure K
Section |I-B. H.owlever, from the viewpoint of recoyermgeth (2) Hold other stages till re-execution safely reaches stefcheck point-1]
role of PC to indicate the correct restart point will only be |wnile (pipeA_stage] ~ check_point-1Jop ==  hazard_NOP
used under an error detection, which may be relatively rare| || pipeA_stage[ check_poi nt -1].error

. . . R || pipeB_stage[ check_poi nt-1].error) {
For the cost consideration, we do not include the paired PC$ for (k= check_poi nt ;k <WBik++)
in the dependability verifying sphere. PCs will still be cked /*P'F:j(ﬁasgﬁgf[‘?rgr'ﬁ—;’;‘g;[ plpeBc_r?(tigke_[E;lTﬁ?NJ false;
when they are a source operand of an instruction such as PC}
based load and many short range branches.

Since the processor is running under a DMR execution
mode, it is thus impossible to identify the correct one from
the dually replicated PCs if they are not identical. To addre
this problem, PC is additionally designed to be covered with* pipeA” and “pipeB” to indicate the two duplicated pipelines,
single parity bit which is generated in the instruction FettF) and the ‘tage” array to represent the six stages in each
stage, shown agGen.Parity” logic in Fig. 4. The parity bit will pipeline, which are IF, ID, RR, EX, MA and WB. Thefror”
be attached to each PC and will only be used under a situatftgld is the error signal, generated by the comparator that
that an error occurs and the paired PCs in the last corr&érifies the correctness of the paired pipeline registene T
instruction are not the same. As multiple faults happening’P” field in each stage is the operation code of the currently
to the paired PCs in their short life cycle may be alreadyrocessed instruction. The expression éfiZard_NOP” is
rare, combining with a transcendental condition that thefge no-operation instruction added due to pipeline hazards
errors are visible only when another error has been detectddit ANCH” serves as all branch-like instructions whose next
in pipeline registers—which further decreases the pdigibi instruction may not be the successive one in the incremental
we can assume that the duplicated PC and their parity waitder. The ¢lk_EN" field in each stage is the enabling signal
provide the correct result as a checkpoint. of the clock to this pipeline register. Disabling or enaglih

As introduced in Section IlI-A, the last correctly execute@an help stall or propagate the corresponding instructions
instruction in the paired pipelines will be used as the check Part (1) in Fig.5 gives the sequence of preparations for
point one to indicate the correct restart point when an errggstarting execution. In this part, Block i) is used to lecat
is detected. Based on the additional units for recovery ihe earliest stage with an erroneous execution, which ételsc
Fig. 4, Fig. 5 gives the detailed procedure to extract th@@ro the location of first execution with the error. Block ii) tsi¢o
restart point from the checkpoint instruction. We use thefipr find out the last correctly executed instruction. Note thase

Fig. 5. The algorithm of recovery procedures.



two blocks are written in a loop style for clarity. In the reathe augmented dummy branch instructiémdnch 1cror-. PC”
implementation, these checks are done in parallel by usiag a mispredicted branch. All instructions afteg,) in the
multiplexors to parse the error flags in all stages. Aftes¢heprogram order will be flushed, which is a normal processing
two steps, variablé and j hold indices to the stages with ain an out-of-order processor.
same meaning in Fig. 3. Part (2) in Fig.5 is to stall the propagation of correct
Block iii) presents the core of this algorithm to extract théstructions, to keep them as multiple checkpoints for the
restart point from the information stored itage[;j]. Assume consideration of tolerating further fault attacks durirge t
instruction |, is the instruction being processedsifuge[j], recovering procedure. When the re-executionpf,}. runs to
and ..., is its next instruction instage[i], detected to be stage[j—1], these checkpointinstructions can start propagation
erroneous. According to the type of,l4, there are two again.
different situations of its following instruction. .., as: If the previous error is caused by a single event upset (SEU)
1) Condition a Cond. a): l40.q is Not a branch-like in- or a single eventt_ transl,:cent (SET), ?t m?y p_roc?ablyc;/ar;;h by
struction or it is not a taken branch instruction, so thaY OPEr re-execuitions. 11 no error signal is indicated arer
| is its successive one in the instruction memore'xe(_:utmg these |nstruct|0ns,_the transient faullt can ga.rnmd
error. . . , ¥s fixed by the error detecting and recovering in this DMR
lerror's PC can be_ calculated by_ incrementingok’s g{ocessor.
E(frﬁfaei?siunsfogg ;nfl?r?gt?or?;‘z‘?goieg)]g CC?)\,/,evrve”?be d 6)kccording to this design, the re—e_xecuti_on can be.started
triggered under this situation. Its major execution is tfrom the next cycle of the error detection point. The_recmg_er_
. . 8elay is at a comparable level to a normal branch mispreaicti
compare the PCs of,,q. If the two paired PCs are

) i - penalty. Since the error rate is far smaller than the branch
identical, they can be regarded as correct. OtherW|§3e y

. N o Isprediction rate, the additional execution cycles cduse
the parity bit will be employed to indicate the correcg] b j y d

one. After this procedure, the correct PC will be senntggtlgisblsema” rollback recovery scheme can be regarded as
to IF stage as the correct restart point (“(1)” in Fig. 4), '

where it will be incremented like in normal IF stageC. Triple Modular Redundancy (TMR) Mode

processing. The fine-grained error recovery scheme in Section [lI-B
2) Condition b Cond. b): l40,.4 is @ taken branch. In this can help the DMR processor overcome all transient errors by
case, L., is the branch target instruction whose PGhyoking proper re-executions. However, although a raseca
will be the target calculation result ofdoq. Since target there may still be threats that permanent errors may octerr af
calculation will be performed in ALU of EX stage, thea |ong time utilization according to paper [5]. DMR mode can
ALU result is also output to the normal pipeline registefot find out the permanently damaged part and will always
As pipeline registers of gl,,s’s executions have beenremain at the status of restarting the erroneous instmicfio
verified by data comparisons, the target PC in instructidfandle this problem, we will include a third pipeline module
l 004 caN thus be directly forwarded to IF stage (*(2)” innto the DMR processor core, which is originally prepared
Fig. 4) for the retrieve of 4., again in the next cycle. put disabled by power gating inside the processorZorhis
By separately handling these two conditions, we can extrdgconfiguration will not be activated under the normal diara
lerror’'s PC from the correct information inyd,q. However, until it detects a very frequent fault occurrence. At thatdi
there may be problems that.),, is already in the WB stage or the TMR processor will be employed for the diagnosis of
the empty stages withazard_NOP between },,,, and l,,q System health. The reconfiguration will require a state rimech
may cross the WB boundary. Both of these two circumstand@sturn on the third pipeline module, prepare the data of both
will make I,,,4 Unavailable for the recovering procedure. T@eneral purpose and special registers, and the contreteegi
solve this, similar to the design of IBM z990 processor [7]0 define the correct connection.
we need to add a hardened storage after WB stage to serv@Ssume that pipelines, B and C will be reconfigured to
as the last checkpoint data. Both PC and the branch tarfdfn @ new TMR core, as illustrated in Fig. 6. Similar to the
of the last committed instruction—excludihgzard_NOP— DMR design in Section II-B, an individual copy of execution
will be committed into this storage which will be implemesite iS performed in each pipeline module. Also, in each pipeline
as special control registers. per stage data dependability check logics work on its local

Besides the preparation of correct restart point from errdft@ and data from its right neighbour. The processor level
detected instageli], the erroneous data after,,, should be voter can determine the permanently defected pipelineerAft
discarded from the processor. It is performed as a pipeli{it: the processor can fall back to DMR mode by removing
flush from IF to stageli], which is the purpose of block iv) the defected pipeline. _ _ _
in Fig. 5. According to the above design, the rollback scheme ! "€réfore, TMR is only required for diagnosing the defected

to start re-execution is very similar to the idea of recoveyNitS: DMR plus proper re-execution is the normal working
from a mispredicted branch. By using this mispredicted tinan

mode to achieve a cost-effective reliable implementation.
like idea, thIS_ roIIbaqk scheme can be eXten_ded to an OutTOfZIt is possible to use this third pipeline for performance $iow. For
order execution environment. It can be achieved by makisnplicity, we assume a spare third pipeline in this paper.
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Fig. 6. TMR execution scheme in EX and MA stages
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§ 1% é é é é z é é Z é é (3.a) Single-ported non-ECC memory (inst. data) 23212
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0% 7 4 % % A % % ] / A (4) Units for Dependability (Error detection/recovery) 5489
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Fig. 7. Performance impact from the recovery under very leigbr rates. [] Memory (inst. + data)  (3.a: 1-port, non-ECC; 3.b: 2-port, ECE)
| [ Register file (2.a: non-ECC; 2b: ECC) _____ 297.7%
200 Combinational logics + (4)x3
Pipeline registers (1) 27.3%
IV. PERFORMANCE AND SYNTHESIS RESULTS g ' @)
2 .
. . . < 216.5%

We designed the proposed scalable single pipeline modul§ 150~ il
under Verilog HDL [17]. The processor follows SH-2 instruc- = ' (2.b)x3
tion set architecture (ISA) [18]. We assumed that the pemes g (8b)
has 512-word instruction memory and 2KB data memory. g 100 12‘2)’ ”””””””””””””””””

With the designed recovery scheme, it is possible to uses 100% I (@bp2
DMR processor to cover every transient error. The total 2 (8b)
execution time also includes the delay that is necessary for sof~—_r ( '2';)' ”””” IO P ...
the recovery from the erroneous execution. We conduced ' a2
several experiments based on the register transfer levél)(R @ @
simulation, using the above HDL implementation. Figure 7 0 . .

Single Scalable single  DMR Processor  TMR Processor

gives the performance impact under a simple fault injeciton
which the faults are limited on the input of the EX stage. Fig. 8. Area estimation of several processor organizations
Stanford benchmarks are used as the workload for the
performance test. In these experiments, we assumed very
high fault injection rates to enlarge the possible perfaraga will be around 0.25%, which can be regarded as a negligible
impact. Two sets of error rates, as 1 error pet cycles and cost.
1 error per10?® cycles, are used. As shown in Fig.7, even The area costs of the proposed high performance and de-
under an impractically high error rate like 10¢ cycles), the pendable architectures were synthesized with SynopsyigiDes
performance impact is around 2.5%. It roughly equals to tt@ompiler under Rohm 0.18n cell library. Table | denotes the
product of the cycle level recovery delay which equals to estimated active areas in several different kinds of pieeli
branch misprediction resolution delay and the error ratee Tunits. Based on these units, we give a detailed hardware cost
main difference between each execution is that sometimessandy of the pipeline architectures and reliable procestuat
error hits insensitive instructions and recovery is nourasf. are used in this research. Figure 8 shows the area of a simple
When error rate shrinks to 142 cycles), the performance losssingle pipeline, the designed scalable pipeline module for



reliable processors, and the two reliable processorsvioilp
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required to be dual ported and covered under ECC logics, as in
the latter three bars. The meaning of each stacked bar i8 Fig.
is listed beside it, which corresponds to the units in Tab.l. [1]
All the processor areas are normalized to the simple proces-
sor in the first bar. As in Fig. 8, the augmentation of scaighbil

and ECC-ed storages requires an area increase of 35.24.

While being extended to space redundancy processors for hig
dependability, the area cost will be doubled or tripled. As i
the third bar, a DMR processor requires a 116.5% more area to
achieve a dual execution for error detection. A TMR processd3l
uses 297.7% area of the unreliable and non-scalable parcess
to implement the processor health diagnosis under a pemhang]
defect attack.

The recovery scheme introduced in this paper can be used
help the DMR processor to tolerate temporary errors. There-
fore, a third unit replication to form a TMR processor will
only be required to diagnose the permanently defected.uni
The DMR processor reduces the area by 27.3% compared to
the TMR one. If we simply assume that power consumption
is roughly proportional to the area, the same level energ
consumption reduction can be achieved from a traditional
TMR processor, under the finding that the proposed recoverg
scheme only introduces a very minor performance impact. (6]

V. CONCLUSIONS

In this paper, a fine-grained recovery scheme is given to prég]
vide proper instruction re-execution under an error daeiact
in a constructed DMR processor. The recovering procedure
introduces a very small hardware extension for checkpo
data by making full use of the information of a stage-levei1)
error detection. The recovery performs a minimal rollbagk s
that it can be finished in a same cycle level delay as a nor
branch misprediction. Even under an impractically higtoerr
rate, the performance impact from recovery itself can béyeas
neglected. [13]

With this fine-grained recovery scheme, a DMR execution
can be primarily used as the reliable architecture for ittab
to handle the occurrences of all transient errors caused
temporary faults. A TMR execution is only required when
diagnosing permanently defected units. The major DMR work-
ing mode shows a 27.3% area reduction as compared to
traditional TMR processor. Power consumption in this part ¢
be saved to achieve an energy-efficient reliable processor.

In addition, by using the very fast and low cost erro
recovery in this research, it is possible to allow more adean
process technology in the reliable processor while tdlegat [17]
some minor performance loss from recovering procedures.

E’M Eric Rotenberg.

] C. L. Chen and M. Y. Hsiao.
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