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Abstract—In the recent years, the increasing error rate has
become one of the major impediments for the application of new
process technologies in electronic devices like microprocessors.
This thereby necessitates the research of fault tolerationmech-
anisms from all device, micro-architecture and system levels to
keep correct computation in future microprocessors, alongthe
advances of process technologies.

Space redundancy, as dual or triple modular redun-
dancy (DMR or TMR), is widely used to tolerate errors with
a negligible performance loss. In this paper, at the micro-
architecture level, we propose a very fine-grained recovery
scheme based on a DMR processor architecture to cover every
transient error inside of the memory interface boundary. Our
recovery method makes full use of the existing duplicated
hardware in the DMR processor, which can avoid large hard-
ware extension by not using checkpoint buffers in many fault-
tolerable processors. The hardware-based recovery is achieved by
dynamically triggering an instruction re-execution procedure in
the next cycle after error detection, which indicates a near-zero
performance impact to achieve an error-free execution.

A TMR architecture is usually preferred as it provides a
seamless error correction by a majority voting logic and therefore
generates no recovery delay. With our fast recovery scheme
at a low hardware cost, our result shows that even under a
relatively high transient error rate, it is possible to only use
a DMR architecture to detect/recover errors at a negligible
performance cost. Our reliable processor is thus constructed
to use a DMR execution with the fast recovery as its major
working mode. It saves around 1/3 energy consumption from a
traditional TMR architecture, while the transient error co verage
is still maintained.

Index Terms—Fault tolerance, redundancy, system recovery

I. I NTRODUCTION

Nowadays, failures in the electronic devices have presented
a serious challenge for the correct operations of the modern
processors. The electronic failures are usually caused by soft
and hard ones. A soft error is marked as transient and may
occur in a processor when a high-energy cosmic particle
charges/discharges and inverts the transistor logical state. A
hard error is caused by permanent physical defects and the
circuit may not recover to its normal status as under a transient
one. The pressure from faults will be even threatening with
the technology trends in the device processing area leadingto
the reduction in operating voltage, the increase in processor
frequency and the increase in the density of on-chip transistors,
as indicated in papers [1]–[4]. Specifically, paper [4] gives a

study of the relationship between the soft error rate (SER)
and the supply voltage in many processor units, including
latches, a chain of 11 fan-out-of-four (FO4) inverters (as
a representation of combinational logic unit), and SRAMs.
Increasing tendencies of SER in these processor units can be
observed along the decrease of the supply voltage, which is a
typical trend as the process technology improves. Meanwhile,
the rate of permanent faults caused by electronicmigration,
stress-migration, time-dependent dielectric breakdown,or ther-
mal cycling is likely to take a similar increasing trend in
consequence of technology scaling, as introduced in paper [5].
For these reasons, it can be predicted that future process
technology will be unfeasible to produce processors with
sufficient reliability. Schemes specially for reliable executions
from either the device or the architecture levels are thereby re-
quired to keep processors advancing along with the continuous
scaling of process technology.

Many fault tolerable mechanisms at the architectural
level, such as dual executions in IBM’s S/390 G5 and
z990 microprocessors [6], [7], simultaneous and redundantly
thread (SRT) [8], and Chip-level Redundantly Threaded mul-
tiprocessor with Recovery (CRTR) [9] have been employed to
alleviate the increasing pressures from electronic errors. The
error detection in these architectures is mainly performedby
checking results from duplicated executions, and the recovery
is achieved by rolling back to a previously stored checkpoint
state. A coarse checkpoint granularity is commonly applied
in these architectures to prevent a very frequent checkpoint
update. However, a major drawback of the coarse granularity
is that all processor running statuses including contents of
register file, system control registers, and memory updatesare
necessary to be periodically buffered. The hardware extension
to achieve the storage of checkpoint data can hardly be
neglected. In addition, a relatively complex recovery sequence
based on a software interrupt is generally required, as de-
scribed in paper [6]. It may be a visible impact to performance
under a future technology where error occurrence may become
more frequent than the current period.

In this research, we proposed a very fine-grained recovery
scheme for a space redundancy processor, in which the re-
covery granularity is at a stage level. This baseline processor
architecture is from a previous research, where a pipeline



structure was designed for the purpose of modularizing high
reliable system via space redundancy [10]. In the constructed
reliable processor, data sanity checks are performed per each
pipeline stage, which provides thorough information of the
correctly executed stages inside the processor. These detailed
execution information are effectively used to achieve the
proposed recovery which dynamically schedules proper in-
struction re-executions after an error detection, following a
similar route after the resolution of a branch misprediction. In
summary, this paper has presented the following contributions:

1) It gives a recovery method by including very few addi-
tional hardware units like checkpoint buffer. The already
redundant hardware units in a DMR processor are fully
used as the checkpoint information for recovery.

2) The delay from recovery is minimized by using an
extremely short distance rollback. It is achieved by
re-executing the instruction after the latest correctly
executed stage inside the pipeline. With a proper control,
the re-execution starts from the cycle right after the error
is detected.

3) It reduces 1/3 working energy as compared to a tradi-
tional TMR processor while maintaining an equal cover-
age for transient errors. With a negligible performance
loss from error recovery, a DMR processor with this
fine-grained recovery can be a substitution for a TMR
processor in tolerating all transient faults.

The paper is organized as follows: Section II introduces
the design of a scalable pipeline module for constructing
processors with adaptive redundancy. Section III describes our
hardware based fine-grained recovery proposal, which effec-
tively uses the detailed per stage error detection information.
In Section IV, performance and hardware results are presented
to study the effectiveness of the proposal. Section V concludes
the whole paper.

II. SCALABLE PIPELINE MODULE FORCONSTRUCTING

DEPENDABLE PROCESSORS

In our research, we are focusing on a framework with
relatively ideal reliability, whose fault tolerating abilities can
meet the top requirement from systems working under a
very high electronic error occurrence environment, such as
computational units in a satellite. Space redundancy [7], [8],
[11], [12] is assumed because of its better coverage for both
transient and permanent faults than the time redundancy [13]–
[15].

Generally, a Triple Modular Redundancy (TMR) [10] archi-
tecture is preferred for its seamless coverage for all transient
and permanent faults. However, a traditional fixed connection
between the three identical modules in TMR presents little
flexibility. Its seamless recovery capability will be unsustain-
able after a permanent fault and will thus require a new set
of TMR to continue the recovery function, despite that 2/3
of the original logics may still work properly. In addition,
the triple redundancy is usually an over-design under the
assumption that transient faults are still more common cases
than permanent ones. A possible solution to these problems
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can be a flexible connection and an adaptive space redundancy
based on proper reconfiguration. For these reasons, we use a
scalable pipeline module from a previous research to construct
processors with an adaptive space redundancy. The fine-
grained error detection in the baseline architecture also serves
as a background to achieve a fast recovery in this paper.

A. Scalable Pipeline Module Design with Dependability

The scalable pipeline design to construct dependable proces-
sors is given in Fig. 1, which contains six traditional textbook-
style stages as instruction fetch (IF), instruction decode(ID),
register read (RR), execution (EX), memory access (MA), and
writeback (WB).

Different from the implementation in papers [7], [8], [11]
which are also fault-tolerable designs based on space redun-
dancy, we designed the error detection to be performed at a
stage boundary. The distributed comparators inside every stage
can help achieve an early and thorough error detection. With
a fast recovery scheme, it is possible to introduce a minimal
performance impact even under a relatively high error rate.

As shown in Fig. 1, input/output unidirectional links are
included in the pipeline module, which are used for depend-
ability data bypassing. A space redundancy processor can be
constructed by connecting multiple pipeline modules where
copies of a single thread are simultaneously executed and
compared.

The storage units including register files, memory units (in-
struction and data caches) are designed to be covered by Error
Correcting Codes (ECC) [16] logics to guarantee a reliable
data storage. Data stored into the memory structures are
regarded to be safe if they were checked before committing.
Different to the register file, caches are shared at the processor
level, since duplicating these large units will cause a hugearea
cost.
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B. Dual Modular Redundancy (DMR) Based Fault-Tolerance

Based on the scalable pipeline module introduced in Sec-
tion II-A, processor cores with high dependability can be
constructed via proper scaling. Figure 2 shows the DMR
combination by including two pipeline modules.

Using the framework given in Fig. 2, reliable computation is
guaranteed by a redundant execution of each instruction. The
instruction replication starts at the fetch stage. The starting
program counter (PC) of a single application thread is respec-
tively provided to both pipelines when the thread is launched.
The duplicated PCs are then accumulated in each pipeline
module. With the dual-ported instruction memory shared
between the two pipeline modules as shown in Fig. 1, same
instructions can be read out in either fetch stage from its own
memory I/O port. After that, the two identical instructions
will be provided to the latter stages in sequence, achievinga
mirrored execution of the original program. Since the two
pipelines work on a same instruction stream, one memory
write port will be sufficient for this DMR mode. Data inside
memory and register files are covered by ECC logics to tolerate
single event upset (SEU).

Although this DMR architecture is very similar to some
traditional lock-step based fault tolerating microprocessors
such as IBM’s S/390 G5 [6], the lock-step mechanism in
this research is designed not to impede the processor working
frequency. As Fig. 2 illustrates, the dependability check logic
is employed after each pipeline register, which contains the
output of the last stage generated in the previous cycle.
Specifically, for the EX stage, the pipeline register before
it holds the information of operation code, source/destina-
tion register numbers, and the source operands data. These
information—from last RR stage—serve as the inputs for the
combinational logic in the EX stage in this clock period1.
Meanwhile, as shown in Fig. 2, all the pipeline register outputs

1Forwarding paths also provide inputs for EX stage. However,they are
from latter pipeline registers in MA and WA stages and will becheck there
accordingly.

will be passed to the left neighbour pipeline by a unidirectional
link. Accordingly, at the same time that EX stage in either
pipeline works on the instruction provided by the pipeline
registers before it, the outputs of these two pipeline registers
are compared by the data dependability check logics. The
results of these data validity checks are marked asErr A and
Err B (with a notation of “rr ”) because they actually indicate
the correctness of outputs from the RR stage of the previous
cycle. By this way, the critical path of EX stage is not impacted
by the dependability check logics and the clock frequency can
remain uninfluenced after adding reliable features.

An erroneous state indicated by either signal ofErr A,
Err B reveals that some faults have occurred in either the
previous RR stage or the pipeline register between RR and EX
stages. This error may most probably influence the execution
correctness of the EX stage, and it should thereby not be
propagated forward. For stage like MA, as shown in Fig. 2,
when signalsEex A and Eex B contain error information,
data committing to the data memory shall also be disabled.
Only for the data committing part of MA and WB stages, the
critical paths are extended by the lock-step mechanism. As
these two stages usually are not the bottleneck in determining
the working frequency, we can regard the frequency to be
unchanged after including the dependability check logics.

III. STAGE-LEVEL ERROR RECOVERY SCHEME

According to the background introduction, two identical
instructions are simultaneously executed in the DMR based
processor architecture. Since those duplicated units in the
space redundant system—including the register files and se-
quential elements such as pipeline registers—already provide
a secondary storage for the processor running information,
they may be sufficient to serve as the checkpoint data in the
traditional sense so as to reduce the hardware extensions for
the recovery supports. Moreover, in this architecture, com-
parisons are made per each stage boundary, which provides
very fine-grained information of the accurate executions in
the processor. Therefore, the recovery can start from the stage
that error is detected, instead of rolling back to a historical
checkpoint state. In this section, a stage-level instruction re-
execution scheme is proposed to achieve a quick hardware
based recovery, in which a minimal rollback is performed
based on the thorough understanding of erroneous locations
inside the DMR processor.

A. Basic Idea of the Recovery

Many coarse-grained checkpoint based recovery method
does not require frequent data sanity checks. The performance
and frequency impacts from error detection are therefore
less likely to be visible. However, after detecting the error,
the coarse-grained recovery methods will usually require a
software sequence like an interrupt to help roll back to the
checkpoint state. The software sequence is also required to
be implemented with a full understanding of the processor
specification. In this section, we are trying to propose a
hardware based recovery scheme for a fine-grained rollback,
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where software interference may not be necessary if the error
is caused by a temporary fault.

We designed our recovery scheme by using the idea of
instruction re-execution, assuming that the temporary state
change in combinational logics and sequential elements like
pipeline registers will fade out after cycles. Basically, the
control of re-execution is designed to be inside the DMR
processor, which now has the runtime information of the
stage holding the first erroneously executed instruction, and
the stage with the last correctly handled instruction as well.
The instruction in the last correct stage can thus be used as
the checkpoint data.

The re-execution starts from an unconditionally jump to the
correct restart point by citing the information stored in the last
correct stage. Figure 3 shows the basic idea of this re-execution
scheme. Using the example demonstrated in Fig. 3(a), Ik−1

and Ik are two consecutive instructions and are executed
in sequence. Assume that in this example, no empty cycles
caused by hazards from data dependences or branch target
resolution delay are between Ik−1 and Ik. As in Fig. 3(a), at
cyclen, the comparators detect that one copy of the executions
of Ik is problematic. Assuming that the executions of Ik−1

are checked to have no error, Ik−1 can thus serve as the last
correctly executed instruction at this point.

According to the design in Fig. 2, the error detected in cycle
n may have occurred in the last stage’s execution of Ik in cycle
n-1, or have been introduced by the state change in pipeline
register which holds Ik in cyclen. Since the execution is based
on a dual replication, it is impossible to tell which copy of Ik

execution is correct. Alternatively, the information stored in
the stages that contain Ik−1 will be used to indicate the correct
restart point.

As shown in Fig. 3(b), after detecting the error in Ik, the last
correct instruction as Ik−1 will be extended to compound with
a dummy jump instruction, asbranch Ik .PC . Ik ’s program
counter (PC) will be filled into the jump instruction as the
branch target. If the jump is correctly handled, Ik will be
re-fetched from the instruction cache and the re-execution
will thereby start in cyclen+1. Note that the augmented
branch instruction is used to express the idea for a proper
rollback. It is not a real instruction and will only be valid
inside Stage[j] in cyclen. Considering the possible delay issue
by manipulating Ik, as the target of this dummy branch can

be directly calculated after Ik and its PC enter Stage[j], we
can roughly regard that this augmentation does not extend the
critical path.

When restarting the execution of Ik, pipelines will be
partially flushed as shown in Fig. 3(b). The pipeline stages
from IF to the stage that contains erroneous Ik will be emptied
by filling no-operation (NOP) instructions. The propagations
of the last correct instruction Ik−1 in this example and instruc-
tions in the latter stages will be stalled by stopping the clock
signals to those corresponding pipeline registers. This isfor the
fault toleration when further fault attacks during the recovery,
by guaranteeing that there is always one or more correctly
executed instructions serving as the checkpoint data in the
pipeline. Although it is possible to use a hardened storage to
cache committed instructions as a checkpoint like in IBM z990
microprocessors, the maximum distributions of checkpoint
data in our design may alleviate the high dependence to the
single point in an IBM processor, especially when facing the
increasing threats from hard faults. Moreover, the recovery can
be started directly from the erroneously executed instruction
so that the depth of rollback may be smaller than many other
system recovery schemes which use coarse-grained historical
checkpoint.

As introduced in Section II-A, the memory structures in-
cluding data memory, instruction memory, and register file
are covered by ECC-like technologies. A correct data storage
in them can thus be assumed. Accordingly, no further large
checkpoint buffer will be required to cache changing logs.

B. Implementation of Transient Error Recovery

Figure 4 gives the implementation of the stage-level re-
covery by slightly extending the architecture in Fig. 2. In
this figure, the units in gray are augmented for the recovery
purpose. For simplicity, only part of the whole DMR processor
is given.

Since the program counter (PC) of each instruction is the
key information that we use to indicate the restart point, we
compound them in the pipeline register in each stage, as
depicted in Fig. 4. This cost of hardware extension may be
negligible because usually PC is attached as a part of the
pipeline register—at least till the execution stage—for calcu-
lating branch target and caching the correct return point of
function or interruption calling. Normally, the pipeline register
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is the object for checking data correctness, as described in
Section II-B. However, from the viewpoint of recovering, the
role of PC to indicate the correct restart point will only be
used under an error detection, which may be relatively rare.
For the cost consideration, we do not include the paired PCs
in the dependability verifying sphere. PCs will still be checked
when they are a source operand of an instruction such as PC
based load and many short range branches.

Since the processor is running under a DMR execution
mode, it is thus impossible to identify the correct one from
the dually replicated PCs if they are not identical. To address
this problem, PC is additionally designed to be covered witha
single parity bit which is generated in the instruction fetch (IF)
stage, shown as “Gen.Parity” logic in Fig. 4. The parity bit will
be attached to each PC and will only be used under a situation
that an error occurs and the paired PCs in the last correct
instruction are not the same. As multiple faults happening
to the paired PCs in their short life cycle may be already
rare, combining with a transcendental condition that these
errors are visible only when another error has been detected
in pipeline registers—which further decreases the possibility,
we can assume that the duplicated PC and their parity will
provide the correct result as a checkpoint.

As introduced in Section III-A, the last correctly executed
instruction in the paired pipelines will be used as the check-
point one to indicate the correct restart point when an error
is detected. Based on the additional units for recovery in
Fig. 4, Fig. 5 gives the detailed procedure to extract the proper
restart point from the checkpoint instruction. We use the prefix

(1) Procedure to restarting execution:
enum {IF, ID, RR, EX, MA, WB } i, j, k;

/ * i) Locate the last stage with error * /
for (i=WB;i ≥IF;i--)

if (pipeA_stage[i].error || pipeB_stage[i].error)
break;

if (i <IF) return; / * No Error * /

/ * ii) Locate the next stage, skipping stages
that contain hazard_NOP inst. * /

for (j=i+1;j ≤WB+1;j++)
if (pipeA_stage[j].OP != hazard_NOP ) break;

/ * I good in stage[j], I error in stage[i] * /

/ * iii) Jump to the correct restart point
* by using the correct value in stage[j] * /

if (pipeA_stage[j].OP != BRANCH

|| ˜pipeA_stage[j].taken) {
/ * Cond.a: I error is the successive inst. of I good * /
/ * PC is only covered by parity * /
good_PC = getCorrectPC(pipeA_stage[j].PC,

pipeB_stage[j].PC);
pipeA_stage[IF].CurrentPC = good_PC;
pipeB_stage[IF].CurrentPC = good_PC;
/ * CurrentPC is (1) in Fig. 4 * /

} else {
/ * Cond.b: I error is the branch target of I good * /
pipeA_stage[IF].NextPC = pipeA_stage[j].brTarget;
pipeB_stage[IF].NextPC = pipeA_stage[j].brTarget;
/ * NextPC is (2) in Fig. 4 * /

}

/ * iv) Flush and enable stage[IF] to stage[j-1] * /
for (k=IF;k <j;k++) {

pipeA_stage[k].OP = pipeB_stage[k].OP = hazard_NOP ;
pipeA_stage[k].clk_EN = pipeB_stage[k].clk_EN = true;

}

check_point = j; / * Checkpointing * /
/ * end of restart execution procedure * /

(2) Hold other stages till re-execution safely reaches stage[check point-1]
while (pipeA_stage[ check_point-1].op == hazard_NOP

|| pipeA_stage[ check_point-1].error
|| pipeB_stage[ check_point-1].error) {

for (k= check_point;k ≤WB;k++)
pipeA_stage[k].clk_EN = pipeB_stage[k].clk_EN = false ;

} / * Hold inst. from stage[ check_point] * /

Fig. 5. The algorithm of recovery procedures.

“pipeA” and “pipeB ” to indicate the two duplicated pipelines,
and the “stage” array to represent the six stages in each
pipeline, which are IF, ID, RR, EX, MA and WB. The “error ”
field is the error signal, generated by the comparator that
verifies the correctness of the paired pipeline registers. The
“OP” field in each stage is the operation code of the currently
processed instruction. The expression of “hazard NOP” is
the no-operation instruction added due to pipeline hazards.
“BRANCH ” serves as all branch-like instructions whose next
instruction may not be the successive one in the incremental
order. The “clk EN ” field in each stage is the enabling signal
of the clock to this pipeline register. Disabling or enabling it
can help stall or propagate the corresponding instructions.

Part (1) in Fig. 5 gives the sequence of preparations for
restarting execution. In this part, Block i) is used to locate
the earliest stage with an erroneous execution, which indicates
the location of first execution with the error. Block ii) tries to
find out the last correctly executed instruction. Note that these



two blocks are written in a loop style for clarity. In the real
implementation, these checks are done in parallel by using
multiplexors to parse the error flags in all stages. After these
two steps, variablei and j hold indices to the stages with a
same meaning in Fig. 3.

Block iii) presents the core of this algorithm to extract the
restart point from the information stored instage[j]. Assume
instruction Igood is the instruction being processed instage[j],
and Ierror is its next instruction instage[i], detected to be
erroneous. According to the type of Igood , there are two
different situations of its following instruction Ierror , as:

1) Condition a (Cond.a): Igood is not a branch-like in-
struction or it is not a taken branch instruction, so that
Ierror is its successive one in the instruction memory.
Ierror ’s PC can be calculated by incrementing Igood ’s
PC. Because PC in each stage is not covered by data
comparison logic, a function “getCorrectPC ()” will be
triggered under this situation. Its major execution is to
compare the PCs of Igood . If the two paired PCs are
identical, they can be regarded as correct. Otherwise,
the parity bit will be employed to indicate the correct
one. After this procedure, the correct PC will be sent
to IF stage as the correct restart point (“(1)” in Fig. 4),
where it will be incremented like in normal IF stage
processing.

2) Condition b (Cond.b): Igood is a taken branch. In this
case, Ierror is the branch target instruction whose PC
will be the target calculation result of Igood . Since target
calculation will be performed in ALU of EX stage, the
ALU result is also output to the normal pipeline register.
As pipeline registers of Igood ’s executions have been
verified by data comparisons, the target PC in instruction
Igood can thus be directly forwarded to IF stage (“(2)” in
Fig. 4) for the retrieve of Ierror again in the next cycle.

By separately handling these two conditions, we can extract
Ierror ’s PC from the correct information in Igood . However,
there may be problems that Ierror is already in the WB stage or
the empty stages withhazard NOP between Ierror and Igood
may cross the WB boundary. Both of these two circumstances
will make Igood unavailable for the recovering procedure. To
solve this, similar to the design of IBM z990 processor [7],
we need to add a hardened storage after WB stage to serve
as the last checkpoint data. Both PC and the branch target
of the last committed instruction—excludinghazard NOP—
will be committed into this storage which will be implemented
as special control registers.

Besides the preparation of correct restart point from error
detected instage[i], the erroneous data after Ierror should be
discarded from the processor. It is performed as a pipeline
flush from IF to stage[i], which is the purpose of block iv)
in Fig. 5. According to the above design, the rollback scheme
to start re-execution is very similar to the idea of recovery
from a mispredicted branch. By using this mispredicted branch
like idea, this rollback scheme can be extended to an out-of-
order execution environment. It can be achieved by making

the augmented dummy branch instruction “branch Ierror .PC ”
as a mispredicted branch. All instructions after Igood in the
program order will be flushed, which is a normal processing
in an out-of-order processor.

Part (2) in Fig. 5 is to stall the propagation of correct
instructions, to keep them as multiple checkpoints for the
consideration of tolerating further fault attacks during the
recovering procedure. When the re-execution of Ierror runs to
stage[j−1], these checkpoint instructions can start propagation
again.

If the previous error is caused by a single event upset (SEU)
or a single event transient (SET), it may probably vanish by
proper re-executions. If no error signal is indicated afterre-
executing these instructions, the transient fault can be regarded
as fixed by the error detecting and recovering in this DMR
processor.

According to this design, the re-execution can be started
from the next cycle of the error detection point. The recovering
delay is at a comparable level to a normal branch misprediction
penalty. Since the error rate is far smaller than the branch
misprediction rate, the additional execution cycles caused
by this small rollback recovery scheme can be regarded as
negligible.

C. Triple Modular Redundancy (TMR) Mode

The fine-grained error recovery scheme in Section III-B
can help the DMR processor overcome all transient errors by
invoking proper re-executions. However, although a rare case,
there may still be threats that permanent errors may occur after
a long time utilization according to paper [5]. DMR mode can
not find out the permanently damaged part and will always
remain at the status of restarting the erroneous instruction. To
handle this problem, we will include a third pipeline module
into the DMR processor core, which is originally prepared
but disabled by power gating inside the processor core2. This
reconfiguration will not be activated under the normal situation
until it detects a very frequent fault occurrence. At that time,
the TMR processor will be employed for the diagnosis of
system health. The reconfiguration will require a state machine
to turn on the third pipeline module, prepare the data of both
general purpose and special registers, and the control registers
to define the correct connection.

Assume that pipelinesA, B and C will be reconfigured to
form a new TMR core, as illustrated in Fig. 6. Similar to the
DMR design in Section II-B, an individual copy of execution
is performed in each pipeline module. Also, in each pipeline,
per stage data dependability check logics work on its local
data and data from its right neighbour. The processor level
voter can determine the permanently defected pipeline. After
that, the processor can fall back to DMR mode by removing
the defected pipeline.

Therefore, TMR is only required for diagnosing the defected
units. DMR plus proper re-execution is the normal working
mode to achieve a cost-effective reliable implementation.

2It is possible to use this third pipeline for performance boosting. For
simplicity, we assume a spare third pipeline in this paper.
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IV. PERFORMANCE ANDSYNTHESIS RESULTS

We designed the proposed scalable single pipeline module
under Verilog HDL [17]. The processor follows SH-2 instruc-
tion set architecture (ISA) [18]. We assumed that the processor
has 512-word instruction memory and 2KB data memory.

With the designed recovery scheme, it is possible to use
DMR processor to cover every transient error. The total
execution time also includes the delay that is necessary for
the recovery from the erroneous execution. We conduced
several experiments based on the register transfer level (RTL)
simulation, using the above HDL implementation. Figure 7
gives the performance impact under a simple fault injectionin
which the faults are limited on the input of the EX stage.

Stanford benchmarks are used as the workload for the
performance test. In these experiments, we assumed very
high fault injection rates to enlarge the possible performance
impact. Two sets of error rates, as 1 error per102 cycles and
1 error per103 cycles, are used. As shown in Fig. 7, even
under an impractically high error rate like 1/(102 cycles), the
performance impact is around 2.5%. It roughly equals to the
product of the cycle level recovery delay which equals to a
branch misprediction resolution delay and the error rate. The
main difference between each execution is that sometimes an
error hits insensitive instructions and recovery is not required.
When error rate shrinks to 1/(103 cycles), the performance loss

TABLE I
AREA ESTIMATION OF DIFFERENT PIPELINE UNITS.

Pipeline units Active area
(in NAND2)

(1) Combinational logics+ pipeline registers 35236
(2.a) Non-ECC register file 9336
(2.b) ECC register file 14345
(3.a) Single-ported non-ECC memory (inst.+ data) 23212
(3.b) Dual-ported ECC memory (inst.+ data) 36588
(4) Units for Dependability (Error detection/recovery) 5489
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will be around 0.25%, which can be regarded as a negligible
cost.

The area costs of the proposed high performance and de-
pendable architectures were synthesized with Synopsys Design
Compiler under Rohm 0.18µm cell library. Table I denotes the
estimated active areas in several different kinds of pipeline
units. Based on these units, we give a detailed hardware cost
study of the pipeline architectures and reliable processors that
are used in this research. Figure 8 shows the area of a simple
single pipeline, the designed scalable pipeline module for



reliable processors, and the two reliable processors following
DMR and TMR architecture respectively. The very simple
single pipeline processor given in the first bar is designed to
be without any scalability and dependability, whose memory
structures (I$ and D$) are single ported. It is only listed for
comparison. For scalability and dependability, the memoryis
required to be dual ported and covered under ECC logics, as in
the latter three bars. The meaning of each stacked bar in Fig.8
is listed beside it, which corresponds to the units in Tab. I.

All the processor areas are normalized to the simple proces-
sor in the first bar. As in Fig. 8, the augmentation of scalability
and ECC-ed storages requires an area increase of 35.2%.
While being extended to space redundancy processors for high
dependability, the area cost will be doubled or tripled. As in
the third bar, a DMR processor requires a 116.5% more area to
achieve a dual execution for error detection. A TMR processor
uses 297.7% area of the unreliable and non-scalable processor
to implement the processor health diagnosis under a permanent
defect attack.

The recovery scheme introduced in this paper can be used to
help the DMR processor to tolerate temporary errors. There-
fore, a third unit replication to form a TMR processor will
only be required to diagnose the permanently defected units.
The DMR processor reduces the area by 27.3% compared to
the TMR one. If we simply assume that power consumption
is roughly proportional to the area, the same level energy
consumption reduction can be achieved from a traditional
TMR processor, under the finding that the proposed recovery
scheme only introduces a very minor performance impact.

V. CONCLUSIONS

In this paper, a fine-grained recovery scheme is given to pro-
vide proper instruction re-execution under an error detection
in a constructed DMR processor. The recovering procedure
introduces a very small hardware extension for checkpoint
data by making full use of the information of a stage-level
error detection. The recovery performs a minimal rollback so
that it can be finished in a same cycle level delay as a normal
branch misprediction. Even under an impractically high error
rate, the performance impact from recovery itself can be easily
neglected.

With this fine-grained recovery scheme, a DMR execution
can be primarily used as the reliable architecture for its ability
to handle the occurrences of all transient errors caused by
temporary faults. A TMR execution is only required when
diagnosing permanently defected units. The major DMR work-
ing mode shows a 27.3% area reduction as compared to the
traditional TMR processor. Power consumption in this part can
be saved to achieve an energy-efficient reliable processor.

In addition, by using the very fast and low cost error
recovery in this research, it is possible to allow more advanced
process technology in the reliable processor while tolerating
some minor performance loss from recovering procedures.
The balance between processor area, working frequency, and
recovery-included execution time under a future process tech-
nology will be the next optimization task of this research.
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