

Circuit-level Insight of Soft Errors and Aging Degradations

Kazutoshi Kobayashi Kyoto Institute of Technology Japan kazutoshi.kobayashi@kit.ac.jp

Outline

- Reliability Issues in VLSIs
- My Experience of Reliability
- Soft Errors
 - What is soft error?
 - How to measure soft errors
 - Mitigation technique and our proposed radiation-hard flops
- Circuit Reliability
 - RO-based BTI-induced degradation measurement
 - VDD and VBB control to suppress BTI-induced degradation while keeping circuit performance.
 - How PID influences initial and aging degradation

Reliability Issues in VLSIs

Outline

- Reliability Issues in VLSIs
- My Experience of Reliability
- Soft Errors
 - What is soft error?
 - How to measure soft errors
 - Mitigation technique and our proposed radiation-hard flops
- Circuit Reliability
 - RO-based BTI-induced degradation measurement
 - VDD and VBB control to suppress BTI-induced degradation while keeping circuit performance.
 - How PID influences initial and aging degradation

First Step to Reliability

- In 2007, Japanese funding agency starts a research project named "Dependable VLSI".
 - 11 projects started in 2007-2009.
 - Our project is "Dependable VLSI Platform using Robust Fabrics" managed by Prof. Onodera (Kyoto Univ.)

Prof.

Reliability: Max

Onodera

From Novice to Expert

- I was a novice researcher in the field of reliability in 2007.
 - In 2007, "FIT is the number of errors in 10⁹ hours" on my notebook.
 - I did not know the word "RTN".
 - "What is telegraph?"
- First attendance of IRPS in 2008
- First soft error paper in VLSI symposium in 2010
- First soft error paper on IRPS in 2011
 - 15 papers + 1 tutorial on IRPS from 2011 to 2022. Best poster award in 2013
- IEDM RSD TPC member (2019–20), IRPS Circuit Reliability topic chair (2022)

Telegraph

Paper Lists of Reliability

- 138 papers (including international conferences) were published from 2009 to 2022.
- Most-cited papers (by Scopus)
 - R. Yamamoto, C. Hamanaka, J. Furuta, K. Kobayashi, and H. Onodera, "An Area-efficient 65 nm Radiation-Hard Dual-Modular Flip-Flop to Avoid Multiple Cell Upsets", IEEE TNS, vol.58, 2011 (50 citations)
 - K. Kobayashi, K. Kubota, M. Masuda, Y. Manzawa, J. Furuta, S. Kanda, and H. Onodera, "A Low-Power and Area-Efficient Radiation-Hard Redundant Flip-Flop, DICE ACFF, in a 65 nm Thin-BOX FD-SOI", IEEE TNS, vol.61, 2014 (45 citations)
 - J. Furuta, C. Hamanaka, K. Kobayashi, and H. Onodera, "A 65nm Bistable Cross-coupled Dual Modular Redundancy Flip-Flop Capable of Protecting Soft Errors on the C-element", VLSI Circuit Symposium, 2010 (34 citations)
 - K. Ito, T. Matsumoto, S. Nishizawa, H. Sunagawa, K. Kobayashi, and H. Onodera, "The Impact of RTN on Performance Fluctuation in CMOS Logic Circuits", IRPS, 2011 (24 citations)
 - J. Furuta, K. Kobayashi, and H. Onodera, "Impact of Cell Distance and Well-contact Density on Neutron-induced Multiple Cell Upsets", IEEE IRPS, 2013 (23 citations)

Red: Soft errors Blue: Circuit Reliability

Full List on http://www-vlsi.es.kit.ac.jp/database/paper-e.php5

Outline

- Reliability Issues in VLSIs
- My Experience of Reliability
- Soft Errors
 - What is soft error?
 - How to measure soft errors
 - Mitigation technique and our proposed radiation-hard flops
- Circuit Reliability
 - RO-based BTI-induced degradation measurement
 - VDD and VBB control to suppress BTI-induced degradation while keeping circuit performance.
 - How PID influences initial and aging degradation

What is Soft Error?

- Caused when a radiation particle penetrates in Si and generates e-h pairs
 - When neutron hits a Si atom (not always). Whenever lpha particle go through chip
- Upset storage cells such as SRAMs/FFs
- A pressing issue of semiconductor chips for automotive, aerospace and HPC
- Not so many companies / researchers knows well about soft errors. Unknown errors → Soft errors?

Scaling Trend of Soft Error Rate (SER)

[TNS11] R. Yamamoto et. al, TNS, pp. 3053-3059 (2011), [TNS14] K. Kobayashi et. al, TNS, pp. 1881-1888 (2014) [UemuraPhD] T. Uemura, "A Study on Soft Error Mitigation for Microprocessor in Bulk CMOS Technology", PhD thesis (2011) [Intel 22nm] N. Seifert et. al, TNS, pp. 2666-2673 (2012) [Intel 14nm] N. Seifert et. al, TNS, pp. 2570-2577 (2015) [Samsung 10nm] M. Jin et. al., IEDM 15.1.1-15.1.4 (2016) 11

12

SEU Mitigation Techniques

- Dual lock-step on architecture level
 - -For automotive and aerospace
- Parity and ECC on circuit/algorithm level
 For SRAM and DRAM
- Majority voting on circuit level
 - -For latches and flip flops
- SOI/FinFET on process/device level
 - -For automotive and HPC

Dual lock-step

[M. Baleani, et al., CASES, 2013]

Soft Error Mitigation Techniques

- Circuit–level
 - Majority Voting such as TMR, DICE, BCDMR FF and etc.
 - Large area, delay and power (ADP) overheads
- Process-level
 - SOI (Silicon on Insulator)
 - 10-100x stronger than bulk
 - No ADP overhead, but more expensive to fabricate
 - FinFET
 - Strong but huge cost (Only for iPhone, FPGA ···)
 - Circuit-level technique for SOI
 - Stacked Strucutre

Stacked FF

BISER FF

- Built-in Soft-Error Resilience FF
 - Developed by Intel and Stanford
 - Two latches and a weak keeper hold data
 - C-element resolves SBU on latches
 - Area efficient but weak to an SET (Single event transient) pulse from the C-element

[M. Zhang, S. Mitra, et al., Trans. VLSI Sys., 14(12):1368-1378, 2006]

BCDMR FF [Furuta et.al, VLSI Cir. 2010]

- Bistable Cross-coupled Dual Modular Redundancy FF
 - Strong against an SET pulse from C-element
 - Duplicated C-elements strongly assists to keep correct data. No areaoverhead because of smaller transistors on C-elements

Alpha and Neutron Results

Fabricated in a 65 nm bulk

- BCDMR is strong against soft errors at higher clock frequency
- Below 10 FIT at 100MHz. BISER in twin well is 50 FIT. BCDMR FF in twin well has no error

BCDMR FF in Scaled Technology

- Similar SERs b/w 65nm interleaved and 16nm not-interleaved BCDMR
 - Interleaved layout decreases SER

[K. Kobayashi, et. al. IRPS 2017]

Interleaved Place redundant storage cells as far apart as possible 17

Soft Errors in Bulk and SOI

- BOX layer prevents carriers from collecting from substrate
 - SOI is resistant to soft errors. SER is 1/10-1/100 of bulk

Experimental Results of Standard FF

[Y. Morita, VLSI Tech. Symp., pp 166-167, 2008]

Standard FF

Soft-error Mitigation for SOI

Stacked Transistor Structure on SOI

- No simultaneous turn-on
 - All transistors are isolated by BOX layer.
 - Not effective on bulk process
- With area and delay overheads
- 1/3 to 1/10 SER reduction on stacked FF

[A. Makihara, TNS 2004]

Stacked Latch on HPC Processor

• 22nm IBM System z Microprocessor

- Additional transistors on latch
 - This figure was not included in the paper, but in slides

Guard-Gate Flip Flop (GGFF)

- 100x higher soft-error tolerance in 16 nm FinFET
 - Longer delay and 12 additional trs.

[A. Balasubramanian, IEEE TNS, vol. 52, no. 6, pp. 2531–2535, 2005.]
[H. Zhang et al., IRPS, pp. 5C-3–1–5C–3–5, 2016]

Filtering Out SET Pulse by Guard Gate

- Two inverters delay SET pulse
 - Output of C-element is stable if τ >SET pulse width
 - Delay time to flip latch becomes long (+ τ)

Feedback Recovery FF

[K. Yamada et al, IEEE S3S, 2018]

Duplicated FRFF (DFRFF)

- Construct guard gate by master and slave latches
 FRFF
 - Only 2 additional transistors
 - Only master latch is strong
 - DFRFF
 - 6 additional transistors
 - Both of master/slave latches are strong

Circuit Performance in 65 nm FDSOI

FF	Area	Delay	Power	ADP	# Tr.
Standard FF	1.00	1.00	1.00	1.00	24
Guard-Gate FF	1.47 (1)	<mark>2.20</mark> (1)	1.06 (1)	3.42	36
FRFF	1.06 (<mark>0.72</mark>)	1.06 (<mark>0.48</mark>)	1.03 (0.97)	1.16	26
DFRFF	1.18 (<mark>0.80</mark>)	1.08 (<mark>0.49</mark>)	1.02 (0.96)	1.29	30

FRFF is faster because of the number of inverters from input to output

Neutron Irradiation Results

 Guard gate FF w/ 240% ADP o.v. is strongest, but FRFF w/ 16 % o.v. and DFRFF w/ 30% o.v. have 3-4x radiation hardness than Standard FF

Heavy-ion Results

- ML on FRFF is stronger against soft errors than SL because of delay time
 - More delay is required on SL
- Average CSs of DFRFF 1/20 and 1/6 smaller than those of TGFF by Ar and Kr
 - Kr produces longer error pulse than Ar

DFRFF in 22 nm FDSOI

- DFRFF and DFFRFFLD (Long-Delay version) were designed and fabricated in 22 nm FDSOI with the collaboration of Dolphin Design since 2019 (Vincent Huard)
- Just presented in RADECS 2022 last week in Venice
- DFRFFLD 100x more radiation-harder than standard FF
 - Ready for automotive and aerospace applications.
- Another paper also designed and measured our DFRFF in the same 22 nm FDSOI
 - Authors stated "We designed 14 FFs. But DFRFF is strongest of all!"

IPHIN

Outline

- Reliability Issues in VLSIs
- My Experience of Reliability
- Soft Errors
 - What is soft error?
 - How to measure soft errors
 - Mitigation technique and our proposed radiation-hard flops
- Circuit Reliability
 - RO-based BTI-induced degradation measurement
 - VDD and VBB control to suppress BTI-induced degradation while keeping circuit performance.
 - How PID influences initial and aging degradation

Bias Temperature Instability (BTI)

- Aging degradation
 - NBTI (Negative BTI)
 - $V_{\rm gs}$ of PMOS < 0 V
 - PBTI (Positive BTI)
 - $V_{\rm gs}$ of NMOS > 0 V

- Dangling bonds in gate oxide or defects in gate oxide
- $V_{\rm th}$ \clubsuit by trapping carriers
- Time constant to trap carrier distributed from 10^{-9} to 10^{9} s

ROs to Measure Aging Degradation

Only NAND-gates Ring Oscillator
 - EN = 0 : RO stops and PBTI occurs.

Only NOR-gates Ring Oscillator
 ENB = 1 : RO stops and NBTI occurs.

NBTI-sensitive and -insensitive RO

NBTI-sensitive RO

- NBTI is accelerated
- |*Vgs*| = VDD >> *Vth*

NBTI-insensitive RO

- NBTI is suppressed
- |Vgs| = Vth

PBTI-sensitive and -insensitive RO

PBTI-sensitive RO

- PBTI is accelerated
- |*Vgs*| = VDD >> *Vth*

PBTI-insensitive RO

- PBTI is suppressed
- |Vgs| = Vth

Extract BTI w/o Fluctuations

- Temporal bias/temperature fluctuations for longterm measurement affect measurement results
- Goal: Extract BTI w/o fluctuations by subtraction b/w BTI-sensitive and -insensitive ROs

Test Chip & Measurement Setup

Structure	Number of ROS	
PBTI-sensitive		
PBTI-insensitive	840	
NBTI-sensitive	in all ROs	
NBTI-insensitive		

Measurement system Engineering Tester + Peltier Heater

Measurement Results (PBTI & NBTI)

- Osc. Freqs. of NBTI and PBTI ROs fluctuate around 5x10³ second
 - May be due to temperature or voltage fluctuations
 - Can be removed by subtraction

Subtraction Results

• Fluctuations are removed by subtraction!!

- Smoothly increase with time
- PBTI: logarithmic (slightly-power-law)
 NBTI: power-law

Outline

- Reliability Issues in VLSIs
- My Experience of Reliability
- Soft Errors
 - What is soft error?
 - How to measure soft errors
 - Mitigation technique and our proposed radiation-hard flops
- Circuit Reliability
 - RO-based BTI-induced degradation measurement
 - VDD and VBB control to suppress BTI-induced degradation while keeping circuit performance.
 - How PID influences initial and aging degradation

BTI Suppression to control VDD & VBB

- BTI-induced Degradation $\propto t^n$
- NBTI can be suppressed to reduce V_{DD}
 NBTI-induced degradation becomes < 10% at V_{BB} = 0.20 V
- VBB (body bias) is controlled to compensate performance degradation
 - -Pros: suppress BTI and dynamic power
 - -Cons: increase static power
 - BTI Time exponent x P_{dynamic} x P_{static} is almost constant

Outline

- Reliability Issues in VLSIs
- My Experience of Reliability
- Soft Errors
 - What is soft error?
 - How to measure soft errors
 - Mitigation technique and our proposed radiation-hard flops
- Circuit Reliability
 - RO-based BTI-induced degradation measurement
 - VDD and VBB control to suppress BTI-induced degradation while keeping circuit performance.
 - How PID influences initial and aging degradation

Plasma Induced Damage (PID)

Charging damage from antenna during back-end-of-line (BEOL) metallization process

Plasma

- Generate defects
 - gate oxide breakdown
 - threshold voltage $(V_{\rm th})$
 - oscillation frequency
- Antenna Defects BOX≈10 nm

- Multilayer wiring
- Thin gate oxide

• PID has become serious reliability issue

Antenna Ratio (AR)

- Antenna Ratio (AR)

 Antenna area
 Gate area
- Strength of PID

- Upper limit: 500
- Difficult to stay below AR 500 in large scale circuits

How PID affects initial and aging degradation?

Ring Oscillators to measure PID

1. Current starved RO to measure initial degradation by PID

2. Measure correlation b/w initial and aging degradation

- Antennas on wires inside Ring Oscillators (ROs)

[R. Kishida et al, JJAP, 2015]

PMOS Type Current Starved RO

- PMOS w/o antenna (Ref.Tr.) as reference
- PMOS w/ antenna (PID Tr.)
- $|V_{th}|$ of PID Tr. increases \Rightarrow Virtual VDD voltage and frequency \checkmark

NMOS Type Current Starved RO

- NMOS Trs. b/w GND and RO GND
- $|V_{th}|$ of PID Tr. increases Virtual GND voltage and frequency \checkmark
- Compare frequencies w/ Ref. and PID Tr. to evaluate PID depending on antenna layers

Test Chip

- 65 nm FDSOI process
- 2 mm x 1.5 mm
- 70 ROs
- 2k <u>antenna ratio</u>
 - Metal area / Gate area
 - 4x bigger than the upper limit

Measurement conditions

- 1.0 V (nominal)
- Room Temp.

Measurement Results of Initial Frequencies in PMOS and NMOS

- Freq. is decreased by increasing metal layers in PMOS
- <u>Higher</u> Freq. in NMOS Trs. than Ref. Tr. $-|V_{th}|$ decreases by PID
- Freq. become <u>lower</u> from M2 to M5.
 - Why? Because of positive charging damage in high-k (HK)

Difference of PID b/w Dielectrics

- Positive charging damage in HK dielectrics [6]
- SiON and HK in fabricated process
- $|V_{\rm th}|$ to by PID in SiON
- $|V_{\rm th}|$ \checkmark by positive charge in HK of NMOS

[K. Eriguchi et al., ICICDT, 2008]

RO to measure initial and aging degradation

[R. Kishida et al, S3S, 2016]

• RO composed of NORs

Measurement Flow

- Initial frequency to evaluate PID
- Oscillation stop to induce NBTI
- Measure frequency after NBTI stress
 - Frequency decrease by NBTI.

Test Chip

- 65 nm process
- 1.8 V
- 80 °C
- AR: 100-1k every 100
- 576 ROs of each AR
- Bulk and thin–BOX FDSOI

NBTI Measurement

- Dots: average of measurements
- Fitting: $f(t) = S_{NBTI} \log(t+1) + f_0$
 - $-S_{NBTI}$: degradation factor
 - $-f_0$: initial frequency

Degradation Factor S_{NBTI}

- Similar tendencies in bulk and FDSOI
 - NBTI caused by PID in FDSOI can be estimated to be the same as in bulk
- NBTI is accelerated by PID when \leq AR=600
 - Should consider NBTI caused by PID even within the AR limit

• S_{NBTI} (> AR600) / NBTI correlates initial frequency?

Correlation b/w NBTI and Initial Frequency

- correlation coefficient (ρ) = 0.24 (weak) in bulk
 - RDF (random dopant fluctuation is dominant than gate oxide variation
- ρ = 0.68 (strong) in FDSOI
 - Gate oxide variation is dominant than RDF
 - Slower ROs w/ higher $V_{\rm th}$ have smaller electric fields

Conclusion

- We have been researching reliability issues in circuit level for 15 years. Over 100 papers were published.
- Our activities are mainly focused to soft errors and aging degradation
- Many radiation-hard flip-flops were proposed, fabricated and measured.
 - Recent work was done in 22-nm FDSOI with the collaboration of Dolphin Design
- BTI-induced aging degradation can be measured by BTIsensitive and -insensitive ROs.
- BTI-suppression method to control VDD and VBB while keeping circuit performance
- PID-induced damage was measured by ROs.
 - Upper layer antenna damages gate dielectrics to decrease PMOS Vth and increase NMOS Vth.
 - Correlation b/w initial and aging degradation is strong in FDSOI but weak in bulk

Acknowledgement

• All members of our VLSI-system Lab. in KIT.

2009

• d.lab VDEC in Univ. of Tokyo for chip fabrication and EDA support

RENESAS socionext

• All corporate collaborators

DESIGN

ROHM

Low power FF

- Low power w/o clock buffer

• Adaptive Coupling FF (ACFF)

[K. T. Chen, ISSCC, pp. 338-340, 2011]

	Area	Delay	Power	# of Tr.
Standard FF	1.00	1.00	1.00	24
ACFF	1.00	1.46	0.55	22

• AC element attenuates SET pulse to decrease critical charge (Qcrit)

Low Power Radhard FFs

# of tr.	Area
28	1.00
24	0.85
126	5.20
72	2.50
72	2.40
56	2.00
48	2.10
	# of tr. 28 24 126 72 72 56 48

BCDMR ACFF

DICE ACFF

	Nonredundant		Redundant				
	Standard	ACFF	TMR	BCDMR	BCDMR	DICE	DICE
	FF		FF	FF	ACFF	FF	ACFF
Bulk	554.3	265.7	0	7.3	0	8.5	16.4
FDSOI	34.7	0	0	0	0	0	0

Neutron SER [FIT/Mbit]

 Both FFs achieves low power at low data activity and low SER

[K. Kobayashi et al, IEEE TNS, vol.61, no. 4, pp. 1881-1888, 2014] [M. Masuda et al, IEEE TNS, vol.60, no. 4, pp. 2750-2755, 2013]

Measurement Results of Initial Frequencies in PMOS

- Normalized Frequency (Freq.) = $f_{\rm PID}/f_{\rm Ref}$
 - How the initial frequency differs from that of Ref. Tr.
- Lower Freq. in PID Trs. than Ref. Tr.
- Degraded by PID as upper metal layers
 - -3.1% decreases from Ref. to M5