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Reliability Issues in VLSIs
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Reliability issues in VLSIs are becoming serious due to aggressive process scaling. This is well-known bath-tab curve. Error probability starts at high occurrence then drops dramatically. It remains stable for some time then,. There is sudden and steep increase caused by wear out failure. During this period temporal failures are dominant. Soft error is one type of temporal failures caused by radiation particles such as  neutron or alpha particle. 
 



What is Soft Error?

• Caused when a radiation particle penetrates in Si and generates 
e-h pairs

- When neutron hits a Si atom (not always).  Whenever α particle go through chip 

• Upset storage cells such as SRAMs/FFs

• A pressing issue of semiconductor chips for automotive, 
aerospace and HPC

• Not so many companies / researchers knows well about soft 
errors. Unknown errors → Soft error?
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What’s soft error? It is caused when Radiation particles such as neutron or alpha particle generate e-h pairs. This upsets storage cells such as SRAMs or FFs. Soft error currently becomes a pressing issue for semiconductor chips for automotive, aerospace and HPC



Reliability Metrics: FIT
• FIT
- Failure in Time

- # of errors / 109 hours (114k years)

- # of errors / 1 M (106) products /1000 (103) hours (40 days)

• Example
- FIT rate of 1μm 1Mbit SRAM: 200 FIT/Mbit at 3 V

- 1 error / 570 years / Mbit

5Measurement Data of 1 Mbit SRAM at RCNP



• Error rates
- Standard SRAM/FF: ～1000 FIT/Mbit

- Standard ASIC : 100,000 FIT/chip ≒ 1 error/year

• Automotive and Aviation
- An error leads to an accident

Soft Error Threaten Safety
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ISO26262 definition of automotive safety

Level FIT rate Objective

ASIL-A < 1000 Convenience (Rear-camera)

ASIL-B, C <100 Safety  (Break assistance, Dashboard display) 

ASIL-D <10 Full automatic driving (Waymo, Tesla,…)

プレゼンター
プレゼンテーションのノート
Soft errors threaten safety. For HPC, soft error reduces MTBF, mean time between failure. It interrupts  PFLOP HPC in 5-15min if Soft error rates stays at TFLOP’s HPC. For automotive and aviation, soft error leads to accidents. ISO26262 defines these levels for automotive safety. ASIL-D is for automatic driving such as google car or tesla. It requests the error rate of under 1 FIT. FIT rate of SRAM is 1000FIT/Mbit. 1FIT is incredibly small value. Some kind of mitigation techniques must be used to ASICs for cars and airplanes. 



Scaling Trend of Soft Error Rate (SER)
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[TNS11] R. Yamamoto et. al, TNS, pp. 3053-3059 (2011), [TNS14] K. Kobayashi et. al, TNS, pp. 1881-1888 (2014)
[UemuraPhD] T. Uemura, "A Study on Soft Error Mitigation for Microprocessor in Bulk CMOS Technology", PhD thesis (2011)
[Intel 22nm] N. Seifert et. al, TNS, pp. 2666-2673 (2012)
[Intel 14nm] N. Seifert et. al, TNS, pp. 2570-2577 (2015)
[Samsung 10nm] M. Jin et. al., IEDM 15.1.1-15.1.4 (2016)

Constant # of 
errors / area

Decreasing # of 
errors / area

SER on FF/latch



Scaling Trend / Failures in HPC
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• SER/Data Center is exponentially increased by technology scaling
• Other systems (autonomous cars etc.) have the similar tendency

• 10PF HPC runs only for a few min w/ same MTBF of TF HPC
• Must be 10,000x stronger against soft errors.  

• Must take care of soft errors on HPC

[H.Liu, IEDM2012]

Failures
/day/TF

Failures
/day/10PF

MTBF
in 10PF

Cray 
XT3/XT4

0.1 ~ 1 1000 
~ 10000

9sec 
~ 1.5min

Clusters 
x86-64

2.6 ~ 8.0 26000 
~ 80000

1sec 
~ 3.3sec

Blue Gene 
L/P

0.01 ~ 0.03 100 
~ 300

5min
~15min

[H. D. Simon, ACTS Workshop,  2006]

MTBF: Mean Time b/w Failure



Soft Errors on HPC

• 88 k processor cores on K computer

10 year/ 88 k = 60 min.

MTTF (Mean Time to Failure)
if a single core keeps on running w/o 

error for 10 year (11000 FIT)

No error for 240 years (<500 FIT) is 
mandatory for 24 hours operation.

8 CPU Cores → 10 year/ 8 = Over 1 year

88 k CPU cores

9

K computer at Riken, Japan
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Single Event Effects
• Single Event Effects (SEE)
- SEU (single event upset) == Soft Error 

• Flip a storage node in flip flop (FF) or memory cell.

- SEL (single event latch-up) 
• Turn on a stray thyristor, then large current flows from VDD to ground.

- SEB (single event burnout) 
• Turn on a power transistor, then burn it out

11Diagram from Gianluca Boselli, TI
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Single Event Transient / Upset (SET / SEU)

• Single Event Transient (SET) pulse
- Current (Voltage) pulse induced by charged particle

- If captured by a storage element, it flip (SEU)

• Single Event Upset (SEU)
- SET inside a storage element may directly flip a stored value

12



Charge Generation by a Particle Hit 
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• If neutron hits a Si atom, nuclear reaction generates 
charged particles (α，ｐroton)→e-h pairs→current pulse
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Also electrons diffuse to drain

• Funneling: Enlarge depletion region by generated charge
• α from radio isotope directly generates e-h pairs 
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SEU Mitigation Techniques
• Dual lock-step on architecture 
level
-For automotive and aerospace

• Parity and ECC on 
circuit/algorithm level
-For SRAM and DRAM

• Majority voting on circuit level
-For latch and flip flops

• SOI/FinFET on process/device 
level
-For automotive and HPC
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Dual lock-step

[M. Baleani, et al., CASES, 2013]



MCU and  MBU

• MCU (Multiple Cell Upset) : A single event that induces 
several cells (e.g. memory cells or flip-flops) in an IC to 
flip their state at one time.

• MBU (Multiple Bit Upset) : A single event that induces 
upset of multiple cells where two or more of the error 
bits occur in the same logical word
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[JEDEC Standard: JESD89A]

0 1 0 1 0 1 0 0

1 1 0 0 0 1 1 0
W0
W1

0 0 0 1 0 1 0 0

1 0 0 0 0 1 1 0
W0
W1

0 1 0 1 0 1 0 0

1 1 1 1 0 1 1 0
W0
W1

MCU

MBU0 0 0 1 0 1 0 0

1 0 0 0 0 1 1 0
W0
W1

SBU (Single Bit Upset)



SBU/MBU Mitigation on SRAM
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• Parity
- Single Error Detect (SED) only for SBU

• ECC (Error Correction Code) for SBU and MBU
- Single Error Correct and Double Error Detect (SEC-DED) for MBU 

Parity = ^ word; ^010111011= ^010011011≠
wordParity

0 1 1 0 0

1 0 1 1 1

0 1 0 1 0

1 1 1 0 1

0 1 1 0

0 1 1 0 0

1 0 0 1 1

0 1 0 1 0

1 1 1 0 1

0 1 1 0Parity

2D-Parity Code
(16+8-bit)

Parityword

MBU can be detected but not corrected by SEC-DED
SEU on FFs cannot be protected by Parity or ECC

because of random placement and area/delay overhead by ECC 

0 1 1 0 0

1 0 0 1 1

0 0 0 1 1

1 1 1 0 1

0 0 1 0

SBU MBU



MCU Rate Elevation by Scaling

• Sensitive area does not scale
- Possibility to cause MCU is increased 

by scaling

• Redundancy is not effective on 
scaled process nodes

• Interleaving must be adopted to 
eliminate MBU on SRAM 

17[J. Furuta et al., IRPS, 6C.3.1-6C.3.4,  2013]

Sensitive Area



Bit Interleaving on SRAM

• Adjacent bits may be flipped at 
the same time by a particle 
strike.

• Interleaved : Bit cells on the 
same word are placed not next 
to each other [Zhao2014]

• MBU Prob. <10% at > 0.5 μm
cell distance
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Three Types of MCU Mechanism 
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Multiple node charge collection 

Parasitic bipolar effect

Multiple node penetration

SOI is effective

Node separation  is effective



Parity and ECC on Commercial Proc.
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• Intel Xeon E5-2600 v3 ( 22nm 18 Core)

 Parity or ECC on Hazardous registers and SRAM 
 SER becomes 1/4

1/4

[B. Bowhill et al., ISSCC, 4.5, 2015 ]



SEU Mitigation on FF / Latch
• Majority Voting by multiple storage nodes
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Triple modular redanduncy (TMR) FF
Voter logic / 
schematic

• If one of three latches is flipped, voter 
resolves contradiction

• Delay element (τ） prevents SET pulse to 
be captured by multiple latches

Large area and delay overhead > 3X



Dual Interlocked Storage Cell (DICE)
• Most frequently-used redundant latch
- Simple but effective and patent-free 
- Over 600 citations

22

0→1 0

• Two latches are mutually 
connected

• If one node is flipped, the 
other nodes restore it

• Lower power, area and 
delay overhead than TMR

[T. Calin et al., IEEE TNS, 43(6):2874-2878, 1996]



DICE on Commercial Processor
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[D. Krueger et al, ISSCC, pp. 94-95, 2008]

On Intel Itanium

1.34x area

1.25x power

1/100 SER 

DICE
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My Experiences
• Flight to Hawaii
- Could control volume of iPod touch 1st gen 

- Recovery after reboot

• Tour of cyclotron facility
- Cyclotron suspended

- Digital still camera (DSC) malfunction. Uncontrollable

- Recovered after removing battery (No mechanical switch)

25



Example on Commercial Products

• After SRAMs are replaced to DRAMs w/ ECC, 
Number of errors is about 1/10

- SRAM is weak against soft errors

- DRAM w/ ECC is very strong

2690% of temporal failures are from soft errors

Results from measurement 
data by Hitachi

[Shimbo et al, SELSE  2011]



Another Example on Work Station

• SRAM from IBM happened to be weak against soft errors.

• Some of Sun’s mission critical servers faltered because of soft 
errors in cache memory

27

We never 
buy IBM’s 

SRAMs



Accident of Avionics by Soft Errors

• Fly-by-wire control 
system failure leading to 
a dangerous pitch-down 
event on autopilot (Oct. 
2008)

- 1/3 passengers were injured

• Soft error rate at 10 km 
(35 kft.) altitude is 100x 
of sea level

- Terrestrial magnetism and 
atmosphere protect system

28
[R. Bowmann. Part B — Landmarks in terrestrial single event effects (SEE). 
NSRE2013 Short Course Notes]



Soft Errors on Smartphones 
• Expose neutron to iPhone 3s

• MTTF (Mean time to failure):
- Once in 2000 years at sea level

- Once in 4 years at 10 km (35 kft)

• Once in 6 flight when 500 
passengers uses smartphones 
for 12 hours

29

[Y. Chen, “Cosmic Ray Effects on Personal Entertainment Applications for Smartphones”, REDW (2013)] 

DUT # of events MTTF (y) at sea level MTTF (y) at 35 kft

iPhone3 5 6000 20

iPhone3s 8 2000 4

Blackberry 11 2000 6



Soft Errors on Embeded PC/ FPGAs
-Expose white spallation neutron bem on Raspberry Pi 3 

(RasPi) and two FPGAs (later on)

-Run programs on RasPi automatically after reboot
• Decode mpeg4 video in an infinite loop 

• Compute multiplication of 32bit x 32bit random integers

• Browsing

30
Raspberry Pi 3 (From raspberrpi.org )



Raspberry Pi 3 (www.raspberrypi.org)

• Quad Core 1.2 GHz Broadcom 
BCM2837 64-bit CPU (40 nm)
including ARM Cortex-A53

• 1 GB DDR-SDRAM

• Up to 64 GB micro SD

• WLAN and (BLE) on board

• 100 Base Ethernet

• 40-pin extended GPIO

• 4 USB2.0 ports

• 4 Pole stereo output and composite 
video port

• Full size (1920x1080) HDMI

An embedded computer running full-spec Linux

31



Test Setups on Neutron Experiments

32

Beam Opening

FPGA boards

Raspberry Pi3

• White Spallation Neutron Beam at RCNP



Example of Shutdown
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Playing MP4 
video

Execute multiplication

MTTF (Mean Time to Failure): 227 sec. → 2950 (3k) years at sea level
One failure / day / 1M Pis

338 kFIT / Pi

プレゼンター
プレゼンテーションのノート
加速係数 4.18x10^8




Soft Errors on FPGA
• SRAM-based FPGA is very weak against soft errors 
- Huge amount of SRAMs to store configuration

• Flash-based FPGA is very strong
- Flash memory do not flip easily by a radiation particle hit

34

CB

CLB

SB

Wire Track

CLB (Configurable Logic Block)

4 input LUT
(Look-up Table)
= 16 bit SRAM

SB (Switch Block)

1 bit SRAM per 
configurable 

switches

SRAM-based island-style FPGA



Neutron Acceleration Test Results
• Configured as a 50k-bit shift register on FPGAs

• Initialized by checker board pattern (0 or 1 / 500 FFs) 
- Leave FPGAs for 30 s.-10 min., then read out stored data

35

Measured Error Patterns

500 
cycles



Error Rates and MTTF of FPGAs
SRAM-based Flash-based

SEU on a flip flop Observed Observed

Firm Error on 
configuration memory

Stuck-at Fault Observed Not Observed

Repeating Burst Error Observed Not Observed

36

Frequent Firm Error on SRAM-based
No Firm Error on Flash-based

Firm error 
on SRAM

SER on FF

SRAM Flash

# of Firm Errors in 16h 149 0

MTTF/h (Ground level) 4.1e7 >6.1e9

Flash-based FPGA meets the requirement 
of ASIL-B/C (<100FIT)
Periodic refresh or reboot is mandatory 
on SRAM-based FPGA0.5 1 2 3 5 10

16% 12% 31% 51% 57% 95%
Firm Error on SRAM
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How to Evaluate Soft Errors 
• Simulation
- Circuit Simulation

• Logic gate, SRAM, latch, flip-flops

- Device Simulation
• Discrete MOSFET, logic gate, SRAM or latch

- Logic Simulation
• Transient or static simulation by fault injection

• Measurement
- Accelerated test

• α Particle, Neutron, Heavy ion and Muon

- Field test
• High altitude for higher neutron flux

• Underground for lower neutron flux 

38



Circuit Simulation

• Attach a current source to 
replicate a current pulse induced 
by a particle hit

• Obtain critical charge Qcrit

• SER is computed by

39
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[Shiv2002]

[Mes1982]

[Mes1982] G.C. Messenger, IEEE TNS, vol. 29, no. 6, pp. 2024–2031, 1982
[Shiv2002] P. Shivakumar, et.al, ICDFN pp. 389–398, 2002.



Circuit Simulation Results

40

SET pulse at NODE0



Device Simulation

• Limitation of circuit simulation
- Consider only charge collected to drain

- Hard to replicate parasitic bipolar effect

• Constructing 2D or 3D structure on TCAD
- Synopsys Sentaurus is used

41

Device models on NMOS
Circuit models on PMOS



Device Simulation (Sentaurus by Synopsys)

• Possible to replicate C-V and I-V characteristics to 
optimize device parameters

42

RMSPE=5.4%

RMSPE=5.3% (Vgs>Vth)



Device Simulation Results
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Heavy Ion • Expose a heavy ion with 
some amount of  LET 
(Linear energy transfer) 
[MeV-cm2/mg]

• Possible to obtain a 
critical LET to cause 
upset (Not SER)

• SER can be computed by 
using PHITS (Particle and 
Heavy Ion Transport code 
System) 

[T. Sato, et al, Journal of Nuclear Sci. & Tech., 2013 ]

LET: energy deposited per unit length 

[J. Furuta, et al., SISPAD, 2017]

Critical LET

https://phits.jaea.go.jp/



α-source

Removable lid

Ceramic 
Pkg

Alpha Irradiation Test
• 241Am or 232Th source on a chip

• Alpha particles are shielded by a 
sheet of paper.

- Ceramic package with removable lid

- Decap mold package 

- Better to remove polyimide to 
increase SER

- DUT is placed to alpha source as 
close as possible (< 1 mm is 
recommended)

44
[JEDEC Standard: JESD89A]

Our measurement setup

https://www.jedec.org/sites/default/files/docs/jesd89a.pdf (not free of charge)

https://www.jedec.org/sites/default/files/docs/jesd89a.pdf


Alpha Irradiation in Vacuum Chamber

• To reduce air shielding effect

45

Alpha-source:
241Am

Die

Packag
e

Vacuum 
chamber

[T. Uemura, PhD Thesis, Osaka University, 2015]

SER computation method

• α emission rate: 0.0005～0.024 count/cm2・h from mold package
- 0.001 count/cm2・h is generally used 

[JEDEC Standard: JESD89A]



White Neutron Irradiation Test

• Accelerator must be used
- Only a few facilities are available in the world

• RCNP in Japan (Cyclotron), LANCSE in USA (LINAC), TRIUMF in 
Canada, TSL in Sweden

- White (spallation) neutron: similar energy spectrum at sea 
level
• Acceleration factor is ~4x108 RCNP ( 1s. irrad. 10y. at sea level )

46

– Lots of DUTs must be 
prepared
 1000 FIT/Mbit == 2500 

errors/Mbit in 1 day 
irradiation

 A few errors on radiation-
hard (rad-hard) storage cells

[C. Slayman, TNS 2010]



Neutron Test Setups

• Accelerated neutron is harmful to human body and 
test instruments

- Humans and PCs must be outside beam room
- Test instruments must be aside beam opening

47

Remote－controlled 
servo motor (movie)



Heavy-Ion Irradiation

48

• Accelerator must be used
- We use TIARA and CYRIC in Japan. Berkeley lab. 

also has an accelerator for heavy ion  

- Better to put DUT in vacuum chamber to 
keep heavy ion energy 

Heavy
-Ions

LET
[MeV/ (mg/cm2)]

Energy

[MeV]

N 3.4 56

Ne 6.6 75

Ar 16 150

Kr 40 322

Xe 64 454

40 MeV

Chip for outer space 
must be strong up to 

LET=40 - 60 MeV

Heavy ions at TIARA

TIARA @ QST: https://www.taka.qst.go.jp/index_e.php
CYRIC @ Tohoku U. : http://www.cyric.tohoku.ac.jp/english/index.html

Vacuum 
chamber



Field Test
• Must prepare huge amount of DUTs
- 1 second in RCNP =10 years at sea level

- 100 errors/year at 1000 FIT/Mbit

• Much more neutrons at higher altitude
- 20x on 4000 m (13,000 feet) 
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Field test on the summit of Mauna Kea in Hawaii main island 
[Tosaka et al., IRPS 2008]

36 soft errors / 100 days
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Contribution of NMOS and PMOS to 
Soft Errors

51

Stacked structure is strong in SOI
(Explained later)

NMOS stack

Non stack

Full stack

• NMOS is weak 
against soft errors 
than PMOS

- Mainly due to carrier 
mobility

Full stackedNon stacked NMOS stacked[P. Hazucha, IEDM2003]

PMOS NMOS

L0 Weak Weak P/NMOS sensitive

L1 Weak Strong PMOS sensitive

L2 Strong Strong P/NMOS insenstive



Measurement Results

52
Alpha Neutron

[K. Yamada et al, IRPS, pp. P-SE.3-1-5, 2018]



LET Dependence by Heavy Ion Beam
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1.5 MeV: Upper limit LET by alpha
18MeV: Upper limit LET by neutron

7.6 MeV

17.5 MeV

40.9 MeV

• Enough to mitigate  soft errors  
only on NMOS hit for terrestrial 
equipments



Soft Error Mitigation Techniques
• Circuit-level
- Majority Voting such as TMR, 

DICE, BCDMR FF and etc.
- Large area, delay and power 

(ADP) overheads

• Process-level
- SOI (Silicon on Insulator)

• 10-100x stronger than bulk
• No ADP overhead, but more expensive 

to fabricate

- FinFET
• Strong but huge cost (Only for iPhone, 

FPGA …)

- Circuit-level technique for SOI
• Stacked Strucutre

54[A. Makihara, TNS 2004]

Stacked FF

DICE Latch
[T. Calin et.al, TNS 1996]

TMR FF

Standard FF

プレゼンター
プレゼンテーションのノート
What kind of mitigation techniques are used for soft errors. One is on the circuit-level. For flip-flops, redundancy is frequently used. This is BCDMR FF we developed. But redundancy requires large area, delay and performance overheads. On the process-level, SOI is a promising candidate. It has no A/D/P overhead. But it is more expensive than bulk. As for the circuit-level techniques for SOI, stacked structure is sometimes used. On SOI, these stacked transistors are separated by BOX layers. So it is hard against soft errors. 



Triple Modular Redundancy
• If one of three FFs is flipped, voter 

removes an error

• If two FFs are flipped, voter cannot 
remove errors 

• Redundant FFs are weak against MCU 
(Multiple Cell Upset)

• MCU rate becomes higher as process 
scaling 

55

MCU on TMR FF

0
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0

0
1

1

1

1

1

[N. Gaspard et al., IRPS, pp. SE.6.1-SE.6.5., 2013]

Close to 1 (Always MCU)

Aligned layout of TMRFF

Error

No Error

プレゼンター
プレゼンテーションのノート
このスライドはスキップ



Placement of TMR FF to prevent MCU

56

(a) Well taps between FF

(b) Share n-well ( PMOSFET is 
stronger than NMOSFET)

(c) (b)+separation

(d) Inline layout with separation
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[J. Furuta et al., IRPS, 6C.3.1-6C.3.4,  2013] [J. Furuta, et al, IEICE Trans. on Electronics, vol.E98-C, no.4, 
pp. 1745-1353, 2015]



BISER FF

• Built-in Soft-Error Resilience FF
- Developed by Intel and Stanford
- Two latches and a weak keeper hold data
- C-element resolves SBU on latches
- Area efficient but weak to an SET (Single 

event transient) pulse from the C-element

57

Clock Frequency

So
ft 

Er
ro

r R
at

e Storage
dominant

C-element
dominant

[M. Zhang, S. Mitra, et al.,Trans. VLSI Sys., 14(12):1368-1378, 2006]

C-element

Particle hits
A B OUT(t)

0 0 0

1 0
OUT(t-1)

0 1

1 1 1



BCDMR FF [Furuta et.al, VLSI Cir. 2010]

• Bistable Cross-coupled Dual Modular Redundancy FF
- Strong against an SET pulse from C-element
- Duplicated C-elements strongly assists to keep correct data. No area-

overhead  because of smaller transistors on C-elements
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Area Delay Power
BISER 3.00 1.47 2.15
BCDMR 3.00 1.45 2.20

C

C

Ce  :  Sk = 5  :  2

Weak keeper(Wk)

C-element(Ce)

Ce  :  Wk =  10  :  1 

Assist

Assist
Strong keeper(Sk)

BISER BCDMR

Drive strength

Normalized by Standard FF



Alpha and Neutron Results

• BCDMR is strong against 
soft errors at higher 
clock frequency

• Below 10 FIT at 100MHz. 
BISER in twin well is 50 FIT. 
BCDMR FF in twin well has 
no error
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BCDMR FF in Scaled Technology 

• Similar SERs b/w 65nm interleaved 
and 16nm not-interleaved BCDMR

- Interleaved layout decreases SER

60

Place redundant storage
cells as far apart as possible[K. Kobayashi, et. al. IRPS 2017]



Low power FF
• Adaptive Coupling FF (ACFF)
- Low power w/o clock buffer

61

[K. T. Chen, ISSCC, pp. 338-340, 2011]

ML SL

AC
Element

Area Delay Power # of Tr.

Standard FF 1.00 1.00 1.00 24

ACFF 1.00 1.46 0.55 22

• AC element attenuates SET pulse 
to decrease critical charge (Qcrit)

[H. Maruoka et al, RADECS, 2016]



Low Power Radhard FFs
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Power

Neutron SER [FIT/Mbit]

• Both FFs achieves low power at 
low data activity and low SER 

BCDMR ACFF DICE ACFF

[K. Kobayashi et al, IEEE TNS, vol.61, no. 4, pp. 1881-1888, 2014]
[M. Masuda et al, IEEE TNS, vol.60, no. 4, pp. 2750-2755, 2013]

10%



Soft Errors in Bulk and SOI
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Bulk SOI

• BOX layer prevents carriers from collecting from substrate
- SOI is resistant to soft errors.  SER is 1/10-1/100  of bulk

[P. Roche, IEDM, 2013]

プレゼンター
プレゼンテーションのノート
How soft errors happens in Bulk and SOI? In bulk, when a charged particle penetrate into Silicon, electrons are accumulated in Drain region by drift and diffusion. On the other hand, in SOI, BOX layer prevents carriers from collecting. So, SOI is strong against soft errors. Error rate is 1/10-1/1000 of bulk.



Experimental Results of Standard FF
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Alpha Particles Neutron

Standard FF

SOI SOI

All FDSOI chips were fabricated in 
a 65nm thin BOX FDSOI process
[Y. Morita, VLSI Tech. Symp., pp 166-167, 2008]

[K. Kobayashi et al, IEEE TNS, vol.61, no. 4, pp. 1881-1888, 2014]



ON

Soft-error Mitigation for SOI
• Stacked Transistor Structure on SOI

65

OFF

ON

• No simultaneous turn-on
- All transistors are isolated by BOX layer.
- Not effective on bulk process

• With area and delay overheads
• 1/3 to 1/10 SER reduction on stacked FF

[A. Makihara, TNS 2004]

Standard Inv.
Stacked Inv.



Stacked Latch on HPC Processor
• 22nm IBM System z Microprocessor

• Additional transistors on latch
- This figure was not included in the paper, but in slides  

66[J. Warnock ISSCC15, 4.1]



AC Slave / All-stacked FF
• ACFF on master  + Stacked Structure on master / slave 
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AC slave-stacked FF (AC_SS FF) AC all-stacked FF (AC_AS FF)

Neutron 
results

FF Area Delay Power # of Tr.

Standard FF 1.00 1.00 1.00 24

ACFF 1.00 1.45 0.62 22

AC_SS FF 1.12 1.49 0.65 26

AC_AS FF 1.24 2.17 0.66 28

Slave stacked is enough to reduce SER

[H. Maruoka et al, RADECS, 2016]



Stacked FF and SLCCFF

• SLCCFF (Stacked Leveling Critical Charge FF) is for low power but faster 
operation

68[Furuta, et. al., TNS 2016]

Three transistors Two transistors

Standard stacked FF SLCC FF

FFs Area Delay Power

Standard DFF 1.00 1.00 1.00

Stacked FF 1.12 2.00 2.13

SLCCFF 1.24 1.67 1.89



Experimental Results
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Neutron SER

65 nm bulk
65 nm SOI

 1/10 SER w/ Stacked Structures on SOI
– Not effectctive on bulk

 SLCCFF is faster and lower-power than Stacked FF



Issue of Stacked Structure

• High-energy particle turns on both of stacked trs. 
- 18MeV is the upper limit of secondary ions by a neutron hit

• Node separation is effective but area-consuming 
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Stacked Latch
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Reduction Sensitive Range Strucutre

• Reduction Sensitive Range (RSR)
- Additional wire promotes recombination of electrons and 

holes
- Not effective on 150 nm FDSOI, but effective on 65nm 

FDSOI
• Stacked structure is enough on 150 nm because stacked transistors 

are separated with enough distance 
71[A.Makihara, TNS, 2004]

Additional wire

contacted pitch: ～200 nm on    65 nm 
～500 nm on 150 nm



Device Simulation Results 

• Hole density goes down to 0 after 100 ps
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Two FFs with Additional Wire
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• RSRFF (Reduction Sensitive 
Range FF)

- Large delay overhead due to 
additional wires

• RSRLDFF (RSR with Low 
Delay FF)

- RSRFF + SLCCFF to reduce 
delay overhead



Heavy Ion Results and Performance

• Expose Xe (67.5 MeV-cm2/mg)
- No error on RSRLDFF

• RSRLDFF: 29% delay reduction with 5% area overhead 
compared with stacked FF
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No Error

Standard FF Stacked FF RSRFF RSRLDFF

Cr
os

s S
ec

tio
n 

[c
m

-2
]

FF Area Delay Power ADP

Standard 1 1 1 1
Stacked 1.24

(1)
1.76
(1)

1.05 
(1)

2.29
(1)

RSR 1.24
(1.00)

2.16 
(1.23)

1.07
(1.04)

2.87
(1.28)

RSRLD 1.35
(1.08)

1.35
(0.71)

1.08
(1.05)

1.97
(0.81)



100x higher soft-error tolerance in 16 nm FinFET
- Longer delay and 12 additional trs.

•

Guard-Gate Flip Flop (GGFF)

75

Standard DFF

GGFF

Master Latch (ML) Slave Latch (SL)

+ 6 Trs.+ 6 Trs.

[A. Balasubramanian, IEEE TNS, vol. 52, no. 6, pp. 2531-2535, 2005.]

[H. Zhang et al., IRPS, pp. 5C-3-1-5C-3-5, 2016]
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ON

C-element

Filtering Out SET Pulse by Guard Gate

• Two inverters delay SET 
pulse

- Output of C-element is stable 
if τ>SET pulse width

- Delay time to flip latch 
becomes long (+τ）

τ



Feedback Recovery FF

• Construct guard gate by  master and slave latches
- FRFF

• Only 2 additional transistors
• Only master latch is strong

- DFRFF
• 6 additional transistors
• Both of master/slave latches are strong

77

C-element

Guard-Gate Structure Guard-Gate Structure

Duplicated FRFF (DFRFF)

FRFF

[K. Yamada et al, IEEE S3S, 2018]

Delay element



Circuit Performance
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FF Area Delay Power ADP # Tr.

Standard FF 1.00 1.00 1.00 1.00 24
Guard-Gate FF 1.47 (1) 2.20 (1) 1.06 (1) 3.42 36
FRFF 1.06 (0.72) 1.06 (0.48) 1.03 (0.97) 1.16 26
DFRFF 1.18 (0.80) 1.08 (0.49) 1.02 (0.96) 1.29 30

FRFF is faster because of the 
number of inverters from input 
to output



Neutron Irradiation Results
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• Guard gate FF w/ 240% ADP o.v. is strongest, but 
FRFF w/ 16 % o.v. and DFRFF w/ 30% o.v. have  3-4x  
radiation hardness than Standard FF



Heavy-ion Results 
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Ar Kr

• ML on FRFF is stronger against soft errors than SL 
because of delay time

- More delay is required on SL

• Average CSs of DFRFF 1/20 and 1/6 smaller than those 
of TGFF by Ar and Kr

- Kr produces longer error pulse than Ar



Summary of FFs for FDSOI
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Area Delay Power Rad-hard level

Master Slave

Standard FF 1.00 1.00 1.00 1 1

ACFF 1.00 1.45 0.62 3 1

Stacked FF 1.12 2.00 2.13 2 2

AC_SS FF 1.12 1.49 0.65 3 2

AS_AS FF 1.24 2.17 0.66 3 2

SLCC FF 1.24 1.67 1.89 2 2

RSRFF 1.24 2.16 1.07 3 3

RSRLDFF 1.35 1.35 1.08 3 3

GGFF 1.47 2.20 1.06 2 2

FRFF 1.06 1.06 1.03 2 1

DFRFF 1.18 1.08 1.02 2 2

1 → 2 → 3
Weak Strong



For Outer Space Missions

• NanoBridge FPGA (NEC)
- ReRAM (nanoBridge) stores 

configuration instead of SRAMs
- Programmed Nanobridge is a resistor
- No single event on Nanobridge

• Radiation-hard NanoBridge
FPGA for highly-reliable 
applications  

- Current FPGA includes 
standard FF w/o rad-hardness 
even though configuration data 
is rad-hard 

- Standard FF is  replaced by 
BCDMR FF 
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Launched into space by Epsilon 
rocket on Jan 11th 2019 
( w/o radiation hardness on FF)

https://www.axelspace.com/en/solution_/rapis1/

[S. Kaeriyama et al., JSSC, 2005]



Outline
• Introduction
- Reliability issues, soft errors, scaling trend and soft errors on HPC

• Single Event Effect and its Mitigation Techniques
- SEU, MCU, MBU, parity, ECC, Bit interleaving and Majority voting

• Realistic Issues Caused by Soft Errors
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Raspberry Pi
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- Circuit simulation and  Device simulation
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- Contribution of NMOS and PMOS to soft errors

- Mitigation techniques for bulk and FDSOI

• Summary 83

プレゼンター
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Summary
• Soft errors threaten our safety
- 90% of temporal failures  from soft errors
- Must take care of soft errors for mission critical applications : 

automotive, avionics and HPC servers

• Soft error estimation methodologies
- Circuit simulation: fast but not accurate
- Device simulation: slow (～1000x) but more accurate
- Acceleration tests: Alpha is easy.  Accelerators must be used for 

neutron and heavy ions. Field tests take long time.  

• Our attempts and results
- NMOS is dominant to cause soft errors: 97.7% from NMOS by neutron
- BCDMR FF for bulk has SER ～10 FIT/MFF in 65 nm bulk and 16 nm 

FinFET. BCDMR ACFF achieves low power and low SER
- Stacked structure for SOI

• AC_SS FF for low power, SLCCFF for area-efficient but large delay overhead
• RSRLDFF is with low delay  for high performance
• DFRFF is area-delay-power efficient (ADP overhead is only 30%)  84



Fabricated Chips
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65 nm bulk (Fujitsu)

65 nm bulk/FDSOI (Renesas)

28 nm FDSOI 
(ST microelectronics)

RSRLDFF: 
22,680 bits

RSRFF: 
22,950 bitsStacked FF:
22,950 bits

Conventional:
22,680 bits



VLSI Design and Test for Systems Dependability
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Terrestrial and Outer Space

• Mainly caused by α particle and neutron
- Low-α material should be used
- Neutron is hard to shade but not always cause 

SEE

• Huge number 
- 10M Smartphones/year, 1M cars/year

• Accident is fatal．Airbag of Takata costs 3B$
- Must mitigate SEE for huge number of products
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• SEE is mainly caused by heavy ions
• Generate E-H pairs when an ion go thru a 

chip
• Hard to shade

• Huge cost / mission
• Rocket, satellites:  30M$/mission
• Must mitigate SEE for small number of 

products

http://aer.nict.go.jp/people/spe_yokoyama.html

Outer Space

Terrestrial

Altitude

Plasmasphere

Ionosphere



Technology Downscaling Trend

• FIT/Mbit↓ as process scaling, but integration 
density ↑

• FIT rate /area:  8x at 28 nm than 150 nm
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https://www.xilinx.com/support/documentation/white_papers/wp395-Mitigating-SEUs.pdf

FIT rate of
SRAM on FPGA

150 nm 90 nm 65 nm 40 nm 28 nm

x1/4

x30



Scaling Trend
• Technology scaling on bulk
- 0.5x / Gen [Intel 14nm]

- Probability of neutron hit ↓ → SER ↓

- Critical charge ↓ → SER ↑

- After 28 nm, sensitive area becomes larger than a transistor. 
Scaling does not decrease probability of neutron hit
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• Technology scaling on FinFET
- 0.2x / Gen [Intel 14nm]

- Current drive capability ∝ Fin height 
(No area overhead)
• Does not increase reverse-biased drain 

junction area [Intel 14nm]



SERs on 65/28 nm FDSOI 

・Heavy ion produces more SEUs than neutron

-Possible to compare SER on SOI process

・28 nm is 18x stronger than 65 nm in error/bit, 5x in error/area 

・Transistor volume on SOI is scaled by process node

-Tr. Volume on bulk includes substrate region
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SEU, SET and MCU

P-bulk

－
+

p-tap

Particle hit

FF0

CLK

soft errorparticle

FF
0
1

CLK

soft error
particle

• Single Event Upset (SEU)
- Flip a stored datum by a particle hit on a 

storage cell (SRAM or FF)

• Single Event Transient (SET)
- Transient pulse induced by a particle hit

- If captured by a storage element, SEU 

• Multiple Cell Upset (MCU)
- Flip multiple bits by a particle hit
- Charge Sharing: Generated carriers are 

collected to multiple nodes

- Parasitic Bipolar Effect (PBE): Turn on Trs
by elevating well potential

- Multiple hit:  Particle penetrates multiple 
storages cells

- MBU: MCU on a single word on memory



# of SEU on Satellites

• # of SEU/day/bit at geostationary orbit

• A few SEU/day/Mbit 
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Results of SOI 



Fabrication Process
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• FDSOI w/ thin BOX layer (10 -15 nm)  in 65 nm 
developed by Renesas Electronics

- No channel doping to reduce process variations

- Control substrate bias through  thin BOX

- similar to 28 nm thin BOX FDSOI  of ST microelectronics w/ 25 
nm BOX layer

Cross Section

[Y. Morita, VLSI Tech. Symp., pp 166-167, 2008]



Device Simulation Results
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FRFF
Particle Hits Particle Hits

LET: 60 MeV・cm2/mg
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Dual Lock-step for Automotive
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IMTS

A/D 
Conv.

R/D 
Conv.

Compare 0 1

R/D A/D 
Conv.Conv.

IMTS

Double Modular 
redundancy

Check

LSDC : Lock-step dual core
A/D Conv. : Analog-Digital Converter 
R/D Conv. : Resolver-Digital Converter
IMTS: Intelligent Motor-Timer System

CPU
(main)

CPU
(checker)

Dual Lock-step
LSDC

IMTS

[H. Kimura et al., ISSCC2017, 3-5]
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