

An Area-efficient 65 nm Radiation-Hard Dual-Modular Flip-Flop to Avoid Multiple Cell Upsets

Ryosuke Yamamoto¹, Chikara Hamanaka¹, Jun Furuta², Kazutoshi Kobayashi^{1,3} and Hidetoshi Onodera^{2,3}

- ¹ Graduate School of Science & Technology, Kyoto Institute of Technology,
- ² Graduate School of Informatics, Kyoto University,
- ³ JST, CREST

発表概要

- 目的
 - 耐ソフトエラーFFの研究
 - レイアウトレベルにおけるMCU対策
- 評価方法
 - MCU対策を行った回路をチップに搭載
 - 中性子ビームを照射
- ■結果
 - 非MCU対策時に比べ、8倍のMCU耐性

- Background & Motivation
- Relation between MCUs and Component Distance
- Layout Structure to Avoid MCUs
- Experimental Result
- Conclusion

Background (1)

LSI less reliable to soft errors by process scaling

- Redundant FFs are used to reduce soft errors
 - TMR, BISER...

Conventional DMR (BISER) FF

- C-element (CM) is connected to both of slave latches
 - Weak to SET on CM
 - Higher SER at higher clock freq.

Proposed BCDMR FF

- Duplicate C-element (CM0+CM1, CS0+CS1)
- While N0 is flipped, N1 is almost stable
 - SET on CM only influences one of slave latches
 - Strong to SET on CM

SERs by Alpha-Particle Irradiation

- Accelerated test using alpha source (Am-241)
- BCDMR has better resilience
 - 700,000x stronger than D-FF at 160 MHz
 - 159x stronger than BISER at 160 MHz

Background (2)

- High-energy neutrons have higher possibility of MCUs
- Process scaling makes the probability of MCUs higher because of
 - Sensitive Volume ≈ Cell Area
 - Lower Q_{crlt}
- MCUs is one of critical issues diminishing soft error resiliency of rad-hard designs

SERs by Neutron Irradiation

- Accelerated test using spallation neutron beam
 - Measured for 100 min.
- BCDMR has low resilience at 100 MHz
 - Only 10x stronger than D-FF

- Background & Motivation
- Relation between MCUs and Component Distance
- Layout Structure to Avoid MCUs
- Experimental Result
- Conclusion

MCUs and Component Distance

D-FF array to measure MCU/SEU

 Although the difference of distance is 0.3 µm, MCU rate is 1/4

MCU strongly depends on component distance

 MCU among redundant components become dominant, if closely placed

Latch	Min. Dis.	# SEU	Us	# MCUs	# M/# S	
Master	0.73 μm	5.	41	88	16 %	
Slave	1.03 µm	4	93	19	3.8 %	
	1/	/4				

 $.03 \, \mu m$

 $0.73 \, \mu m$

- Background
- Relation between MCUs and Component Distance
- Layout Structure to Avoid MCUs
- Experimental Result
- Conclusion

Critical Components in TMR

- Two of three MLs/SLs are flipped,Q become wrong
 - A pair of latches called critical components

Floorplan to avoid MCUs in TMR

 If critical components are placed closely, they are flipped easily

Interleaving is very effective to prevent MCUs

Critical Components in BCDMR

- Two of MLs/SLs and keeper are flipped,
 Q become wrong
 - Place them as far apart as possible !!

Critical components

- ML0 + ML1
- ML0 + Keeper
- ML1 + Keeper

Critical components

- SL0 + SL1
- SL0 + Keeper
- SL1 + Keeper

Floorplan to avoid MCUs in BCDMR

- In old floorplan, distance between Crit. Comp. is short
 - Lower MCUs tolerance
- In revised floorplan, place them separately
- Min. Dis. Between Crit. Comp. is
 - 2.8x without any area overhead !! vss

		Min. Dis.
	old	0.77 µm
BCDMR FF	revised	2.13 µm

- Background
- Relation between MCUs and Component Distance
- Layout Structure to Avoid MCUs
- Experimental Result
- Conclusion

Chip Micrograph

- Fabricated a 65 nm chip including two FF arrays on twin-well and triple-well structure
 - BCDMR FF array (right side), BISER (left side)

Experiment Setup

- Accelerated test using spallation neutron beam
- At Research Center for Neutron physics (RCNP) of Osaka University
- 16 test chips using 6 stacked DUT boards
 - Measured for 50 min.
 - Retrieve stored values every 5 min.

Results

- SER on the BISER FFs is increasing according to clock freq.
 - Weak to SET on C-element
- <9 FIT/Mbit on the BCDMR FFs in twin-well</p>
 - Strong to SET on C-element
- Errors in the triple-well might be caused by parasitic bipolar effect

Comparison of SERs at 100 MHz

- Background
- Relation between MCUs and Component Distance
- Layout Structure to Avoid MCUs
- Experimental Result
- Conclusion

Conclusion

- Propose a layout structure to avoid MCUs on redundant FFs
 - Separating Crit. Comp. without any area overhead
 - In BISER, 3.4x MCU tolerance by 2.3x Min. Dis
 - In BCDMR, 8x MCU tolerance by 2.8x Min. Dis

- BCDMR FF has higher soft error resilience
 - <9 FIT/Mbit (No error) on twin-well</p>
 - Over 100x stronger than non-redundant D-FF

at 100 MHz